
De Bruijn Graph Based Solution for Lookup
Acceleration and Optimization in P2P Networks

Mourad Amad1 • Djamil Aı̈ssani1 • Ahmed Meddahi2 •

Makhlouf Benkerrou3 • Farouk Amghar3

� Springer Science+Business Media New York 2015

Abstract There is no doubt that P2P traffic mainly video traffic (e.g. P2P streaming, P2P

file sharing, P2P IPTV) increases and will represent a significant percent of the total IP

video traffic (80 percent by 2018 of the global IP traffic according forecasts). Peer-to-peer

(P2P) is based on some main concepts such as mutualization of resources (e.g. data,

programs, service) at Internet scale. It is also considered as one of the most important

models able to replace the client-server model (e.g. for media streaming). Nevertheless,

one of the fundamental problems of P2P networks is to locate node emplacements or

resources and service location. Localisation problem is critical as there is no central server

and churn rate can be high in some environments (high dynamicity). Lookup optimization

in terms of number of hops or delay is not well considered in existing models, and still

represents a real challenge. In this context and according to their specific characteristics

and properties, De Bruijn graph based solutions constitute good candidates for lookup

optimization. In this paper, we propose a new optimized model for lookup acceleration on

P2P networks based on De Bruijn graph. Performance evaluations and simulation results

show that our proposed approach is performant, compared to the main existing model.

& Mourad Amad
amad.mourad@gmail.com

Djamil Aı̈ssani
lamos.bejaia@univ-bejaia.dz

Ahmed Meddahi
ahmed.meddahi@telecom-lille.fr

Makhlouf Benkerrou
mbenkerrou2001@yahoo.fr

Farouk Amghar
farouk.amghar@univ-bejaia.dz

1 LaMOS Research Unit, Faculty of Exact Sciences, University of Bejaia, 06000 Bejaı̈a, Algeria

2 Institut Mines Telecom, Telecom Lille, Lille, France

3 Bejaia University, Bejaı̈a, Algeria

123

Wireless Pers Commun
DOI 10.1007/s11277-015-2851-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-015-2851-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-015-2851-y&domain=pdf

Keywords P2P � Resource localization � Lookup acceleration � De Bruijn graphs

1 Introduction

P2P lookup optimization and acceleration consists of relaying rapidly each node with

others, with few intermediaries, while maintaining only a minimum of contacts for each

node. Graph theory allows to formulate and model this problem. On one hand, a network

can be represented as a graph with: nodes in the graph correspond to nodes in the network

and the arcs correspond to contacts of the node. On the other hand, lookup services is a

fundamental process in each P2P network. It consists of finding resources stored in any

node of the network or the node profile (user) from any other node. This is the most and the

main executed function. However, lookup optimization (e.g. number of hops, delay) is a

critical issue. In this representation, the optimized path corresponds to the connected graph

with optimized degree and diameter. In order to solve this problem, many types of solu-

tions have been proposed in the literature, each one uses a particular graph (e.g. ring,

hierarchical ring, d-tore,…). However, lookup acceleration and optimization in terms of

number of hops (virtual parameter) and delay (physical parameter) is a real challenge,

particularly for De Bruijn graph based solutions where the graph presents some relevant

characteristics such as degree and diameter.

Many classifications of P2P networks have been proposed in the literature. The first one

considers the degree of centralization. In this classification, three architectures have been

considered: centralized such as Napster,1 decentralized such as Gnutella2 and hybrid such

as KaZaa.3 The second classification considers the structuration degree of the network

topology. In this classification, we distinguish two classes: structured architecture like

CAN [1] and unstructured architecture like in [2].

The number of hops for lookup and localization service on application layer in any peer

to peer network is higher than the corresponding number of hops in physical layer. So,

routing acceleration and optimization is still a challenge, particularly for real time appli-

cations such as P2P-IPTV and VoIP.

Resources/nodes localization in peer to peer networks works independently of the

underlying layer and constitutes a logical network, requiring a mechanism for naming both

for data and peer. Distributed hash tables (DHTs) are examples of routing layers that

implement such an approach (e.g. Chord [3], Pastry [4], HPM [5] and [6]). However, from

maintenance stabilization point of view, the network degree needs to be optimized. Given

this, recent mechanisms based on specific graphs (e.g. Skip graph [7], Knodel graph [8],

Kayley graph [9], Pancake graph [10], Skip List [11]…) have been investigated, partic-

ularly, De Bruijn graph based solutions [12] which has led to the development of systems

as Koorde [13] and D2B [12]. De Bruijn graph constitutes a good candidate for lookup

acceleration and optimization in large scale P2P networks, because it provides a constant

degree with a logarithmic diameter.

In this paper, we propose a scalable solution for lookup acceleration and optimization

for structured peer to peer networks based on De Bruijn graph. In the proposed solution, in

1 www.napster.com.
2 www.gnutella.com.
3 www.kazaa.com.

M. Amad et al.

123

http://www.napster.com
http://www.gnutella.com
http://www.kazaa.com

order to accelerate and simplify the lookup process, some specific tasks are executed

locally.

The rest of this paper is organized as follow: In Sect. 2, we give a background regarding

De Bruijn graph and related works on lookup service based on De Bruijn graph in the

context of P2P networks. In Sect. 3, we present our solution for lookup acceleration and

optimization. Performance evaluation of the proposed model is given in Sect. 4. Finally,

we conclude and give perspectives, particularly for the application of the proposed model

under high churn conditions.

2 Background and Related Works

In this section, we present the fundamental concepts of De Bruijn graph with a focus on

concepts that are used in our proposed solution. Furthermore, a critical analysis of some

principal existing solutions based on De Bruijn graph is also given in order to position,

evaluate and compare our proposed solution.

2.1 De Bruijn Graph Concepts

De Bruijn graph denoted B (d, D) is a directed graph whose nodes are words of length D on

an alphabet of size d. There is an arc from node x to node y if and only if the D� 1 first

letters of y correspond to D� 1 last letters of x. As a fairly obvious way, the parameter d is

the degree of the graph [14]. Figure 1 shows an example of De Bruijn graph B (2, 3). An

arc from node (bba) to node (bab) exists, because both nodes have a common prefix and

suffix (ba).

2.1.1 Eulerian Circuit

It is an Euclidean path that passes once and only once by each arc of the considered graph.

An Eulerian circuit is a path whose extremities are confused.

2.1.2 Words in De Bruijn Graph

In some cycles of bits, by setting a size n, we found all sets of n bits exactly once in this

circuit. A cycle or a sequence of De Bruijn of order n with k letters is a word of length kn

containing circularly all words of length n over the alphabet f0; 1; . . .k � 1g. Thus, this
cycle provides a way to enumerate all words of length n. As an example, for k ¼ 2 and

bba baa

bab ababbb
aaa

abb aab

a
a

b

b

b

ba a

b
a

ab

b

a

b a

Fig. 1 De Bruijn graph B (2, 3) of order D = 3, A ¼ fa; bg

De Bruijn Graph Based Solution for Lookup Acceleration and…

123

n ¼ 3, the word x ¼ aaababbb is a De Bruijn cycle of order 3. Indeed, the eight binary

words of length 3 appear successively in x organized circularly in sequence (aaa, aab,

aba, bab, abb, bbb, bba, baa). The first two concepts (euclidean circuit and word of De

Bruijn) consider that finding a De Bruijn sequence is equivalent to finding an Eulerian

circuit.

For each node x, both degrees d�ðxÞ and dþðxÞ, corresponding to the numbers of

incoming and outgoing arcs are equals and therefore an Eulerian circuit exist [14].

The De Bruijn graph of order k for an alphabet A ¼ fa1; . . .akg of size n is defined as

follows:

1. Nodes are the set of all words of length n on A,

2. Each node has k outgoing edges (arcs) labeled by the letters of A,

3. Successors of nodes are obtained by removing its first letter and adding one of

k possible letters at the end.

Figure 1 represents a De Bruijn graph of order 3.

Algorithm 1 allows to browse the graph illustrated in Fig. 1 without passing twice

through the same arc. As an example, from node bbb, the Eulerian Circuit is: {bbb-(a)-
bba-(a)-baa-(a)-aaa-(a)-aaa-(b)-aab-(a)-aba-(a)-baa-(b)-aab-(b)-abb-(a)-bba-(b)-bab-(a)-aba

-(b)-bab-(b)-abb-(b)-bbb-(b)-bbb}.

Algorithm 1 De Bruijn Graph run through Algorithm
1. Begin
2. Choose a starting node,
3. From the current node, first out by the arc labelled a,
and by the arc labelled b only if it is already out in a,
3. Stop when continuing is not possible (it is already out
by a and b),
4. End.

2.2 Related Works on De Bruijn Graph Based Solutions

De Bruijn graphs have been proposed for many applications [15] but also for network

routing. P2P community is interested to exploit these graphs and their applications as part

of DHTs. Four principle infrastructures have emerged: D2B [12], Koorde [13], Distance

Halving [16] and DH-DHT [17].

2.2.1 D2B

The D2B [12] with two-dimensional employs the set K ¼ f0; 2m � 1g as a principal area,

also seen as a set of binary string s of length m. All participants in D2B employ the same

function H that hashes the resource IDs in K. D2B nodes have also an identifier represented

as a binary string, but the length of ID is less than or equal to m. Thus, there are at most 2m

nodes in D2B.

The value of a node u with identifier x1. . .xk is defined by the function

valðuÞ ¼ 2m�k �
Pk

i¼1ðxi � 2k�iÞ, where each node is responsible for the keys in the range

½valðuÞ; 2m�k �
Pk

i¼1ðxi � 2k�i þ 1Þ � 1�:
Binary representation of a key k1. . .km is referenced by the node of identifier x1. . .xk if

and only if x1. . .xk is a prefix of k1. . .km. From the routing table viewpoint, each peer D2B

M. Amad et al.

123

maintains three types of links (entries) to successors (children, parents, and brothers).

Table 1 shows the formal description of the identifiers for these three types of entries [12].

2.2.2 Koorde

For simplification purpose, let us consider the simple scenario (but theoretical) where all

identifiers designate a node. Algorithm 2 illustrates the routing process in Koorde; where n

denotes the current node in the lookup process, n0 the successor, k the desired identifier,

kshift corresponds to k but shifted by the number of previous iterations. o is a shift operator

in the considered base (e.g. d ¼ 2): xoy ¼ 2� xþ ymod2D. The initial call made by the

node n that seeks resource k is n.search (k, k). Initially, the algorithm places the first letter

of k in the last position of the current node, then the first two letters in the last two

positions, until giving the complete identifier k. The identifiers are with length D and the

complexity is with D steps [13].

Algorithm 2 First Routing Algorithm with Koorde
(n.search(k,kshift))
1. Begin
2. if (k=n) then
3. return (n)
4. Else,
5. n ← nofirstChar(kshift);
6. return (n’.search(k, kshift o O));
7. Endif.
8. End.

In practice, peer-to-peer systems don’t take benefits from the ring topology, in order to

limit the collision of peer identifiers. Consequently, the above presented theoretical method

can’t be considered, because in practice some nodes do not exist or can disappear. In fact,

unlike Chord [3], each node has a fixed number of contacts in Koorde. So, without theses

contacts, the routing process can not be executed. The real process of routing in Koorde

will therefore simulate a perfect routing, while not passing just only by existing nodes.

Given this, each node n should get two additional contacts: its successor on the ring

denoted succ and the predecessor of 2n denoted p (equal to 2n if it exists) [14]. Algorithm 3

illustrates this process.

Table 1 Routing table entries for a peer u with identifier x1. . .xk in D2B

Links Identifiers

Children X2. . .Xj with j� k or X2. . .XkY1. . .Xl, with 1� l�m� kþ 1

Parents aX1. . .Xj with a 2 0; 1 and j� k or bX1. . .XkY1. . .Yl with b 2 0; 1 and 1� l�m� k� 1

Brothers v and w w big brother of v if it has the smallest value val(w) greater than v

Children of u w little brother of v if it has the largest value val(w) lower than v

De Bruijn Graph Based Solution for Lookup Acceleration and…

123

Algorithm 3 Real Routing Algorithm with Koorde
(n.search(k,kshift,i))
1. Begin
2. if (k ∈]n, succ]) then
3. return n.succ
4. else
5. if (i ∈]n, succ]) then
6. return p.search(k,kshift o 0,i o firstChar(kshift))
7. else
8. return succ.search(k,kshift,i)
9. EndIf
10. EndIf
11. End.

Algorithm 3 presents an extension of the previous algorithm, taking into consideration

the changes and improvements discussed above. A node n looking for a given resource

k calls the lookup function with the appropriate parameters (k, k, i). In this function,

i represents the current imaginary node of perfect routing that corresponds to the current

node in the Algorithm 2.

The basic idea consists of maintaining as current and real node n, the predecessor of

imaginary node i. At each step, if n does not verify this property, we use the successors to

reach this property. Then, carried out a routing step as in Algorithm 2, shifting node i with

n letters: perfect routing arrives at node 2i or 2iþ 1, real routing arrives at the node p (that

precede 2n). Since n was close to i, the probability to have p close to 2i is high. This

process is still running until i equal to the requested resource k. At this point, n is the real

node, it is the predecessor of i, and thus its successor is also the successor of k, therefore, it

gets the data. From the standpoint of complexity, this algorithm has D real routing steps

(equivalent to the Algorithm 2); the number of steps using the successor can be estimated to

2D. So, the complexity is equal to 3D ¼ Oðlog2NÞsteps [14].

2.2.3 DH-DHT

The Distance Halving (DH-DHT) [17] is another system based on the De Bruijn graph such

as Koorde. However, graph establishment is different. The DH is based on an approach

called the continuous discrete approach to the construction of graphs. To establish a De

Bruijn graph with this approach, mark space is normalized in a continuous space repre-

sented by the interval [0, 1[. Nodes are points in this interval. Each node y has two edges, a

left edge l(y) and a right edge r(y) where, lðyÞ ¼ y
2
and rðyÞ ¼ y

2
þ 1

2
[18].

Given the set of points and their edges, a discretization step is made to establish the

graph. The set of points are denoted by x!. Points of x! divide the space into n segments.

The segment of a point xi; SðxiÞ ¼ ½xi; xiþ1Þ; ði ¼ 1. . .n� 1Þ and SðxnÞ ¼ ½xn�1; 1ÞU½0; x1Þ.
If a node y has an edge that belongs to a segment of node z, then there is an edge in the

discrete graph between y and z. We can also note that the segments are defined in order to

obtain a circular space mark.

The motivation of using this type of graph is that for each node, the space is divided into

two intervals and pointers to two other nodes are kept. The first one is in the middle of the

left interval and the second one is in the middle of the right interval. Figure 2a shows the

indicators of all nodes in a DH-network of size N = 8. Figure 2b shows the paths of all

possible destinations from node 1.

M. Amad et al.

123

The lookup request is sent to the specified node near the left edge to match a 0 and the

right edge to match a 1. The path length of lookup process is then equal to Oðlg2ðnÞÞ [18].
A new node n joins a DH-network by searching a node s such that n belongs to S (s).

n then uses s for lookup its left and right edges. from the construction of DH, a node can

easily learn which nodes can be reached. Therefore, a node can easily compute nodes to be

updated and notify them of the existence of n. Updating the other nodes that leave the DH-

network, is made in the same manner.

The DH identifies the failure problems that can lead to a disconnected graph and

recommends an additional state of OðlgðnÞÞ indicators. This is compliant with the Koorde

principle. The main advantage of Koorde is to have a graph with constant degree. How-

ever, this property is compromised if the fault tolerance is considered. With a logarithmic

degree, these types of graphs can provide a diameter of
lgðnÞ

lgðlgðnÞÞ [18].

Because lookup optimization and acceleration is a critical and it is also the most

executed function in P2P networks, it should be limited and controlled. In the following,

we propose a novel hybrid solution based on some characteristics of D2B, DH-DHT and

Koorde methods in order to accelerate this function.

0 1 2 3 4 5 6 7

Node 0

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

1

4 0

4 0

6 2 4 0

6 2

7 3 5 1

3

5 1

6 2 4
0

7 3 5 1 6 2 4 0

4

6 2

7 3 5 1

7 5 1 6 2 4 03

1 0

1 0

1 01 0

1 0

1 01 0

1 0

1 0

1 0
1 0

1 0

1 0

1 0

1 0

1 01 0

1 0

1 0
1 0

(a) (b)

Fig. 2 a Indicators of all nodes in a complete Distance-Halving of network where N = 8 and b paths from
node 1 to other nodes

De Bruijn Graph Based Solution for Lookup Acceleration and…

123

3 Proposed Solution

In this paper, we propose a new hybrid P2P architecture based on De Bruijn graph. It

combines advantages of DH-DHT, D2B and Koorde models in order to optimize and

accelerate lookup process while minimizing the architecture management complexity,

some parts of the lookup process are locally executed.

3.1 Problem and Motivations

Routing (lookup) in P2P networks is done at the application layer and therefore the

associate number of hops at the network layer is potentially larger. So, the main objective

in the P2P routing process is to reduce as much as possible the number of hops for lookup

acceleration and optimization. For Koorde protocol [13], routing is based on the notion of

left shift. For example, if the node 0010 requests to reach the node 1011, it will do the

following shift operations: 0010 ! 0101 ! 1010 ! 0101 ! 1011. So, the cost lookup is

four hops. However, we can notice that the nodes 0010 and 1011 have a common string 10,

which is the suffix and prefix of nodes 0010 and 1011 respectively, so only two shifts are

needed to reach the node 1011 from node 0010.

The proposed hybrid solution consists in combining and preserving the benefits of

existing methods previously presented DH-DHT, D2B and koorde. So, we focus on

minimizing the number of hops for routing process.

3.2 Functional Principle

To route a lookup request from a node to another in D2B [12], we consider the largest

common string between these two nodes, which is the suffix of the first and prefix of the

second node. DH-DHT also uses the principle of De Bruijn graph in its topology, so if we

exploit the principle illustrated in Fig. 2a, we get the graph represented in Fig. 3, which is

a De Bruijn graph B (2, 3) with right shift between nodes. As our solution is based on the

De Bruijn graph with right shift, so the routing of a request from a node X ¼ x1. . .xD to a

node Y ¼ y1. . .yD, consists of searching the string s which is a prefix of X and a suffix of

Y, instead of searching the longest string s with a suffix of X and a prefix of Y. To

implement this solution, we define alpha (a), a new shift operator in the base d (e.g. d ¼ 2)

as follows:

xay ¼ xdiv2þ y � 2D�1: ð1Þ

3.3 Elimination of the Common String Between Source and Destination

Algorithm 4 illustrates the process that removes the common chain (string) in the second

node (requested), which is the prefix of the first node and suffix of the second one, to

minimize the number of hops in the routing algorithm (Algorithm 5). Algorithm 4 is

locally executed by the current requestor node. In fact, the lookup is significantly

accelerated.

M. Amad et al.

123

Algorithm 4 Common String Elimination Procedure
1. Begin
2. n1=n; k1 = k;
3. While (D > 0) do
4. BeginWhile
5. If (LastChar(k1)! = LastChar(n1)) Then
6. Begin
7. n1 = n1 Div 2;
8. D=D-1;
9. end
10. H=D; n2 = n1;
11. While (LastChar(k1) == LastChar(n2) and (H > 0))
do
12. begin
13. n2 = n2 Div 2;
14. k1 = k1 α 0
15. H=H-1;
16. end
17. If (H > 0) then
18. k1 = k; n1 = n1 Div 2; D = D - 1;
19. else
20. D=0;
21. endWhile
22. if (h==0) then
23. k =k1;
24. End.

To understand the benefit of this procedure, we execute it by considering the two

following nodes: source node n ¼ 1000 and destination node k ¼ 1110. The details of each

step are given in Table 2.

• Make, n1 ¼ 1000 and k1 ¼ 1110;

• We have: LastChar (k1) = LastChar (n1) = 0, so the condition (if) is not verified;

• In the second loop at line N9,

• We have n1 = 100, k1 = 0111 and D = 3;

• We have: LastChar (k1) = 1 and LastChar (n1) = 0, then the conditionwhile is not verified;

• Outgoing from the while loop, we have D = 3, so, k1 is equal to 1110;

• Since D[0, the while loop is re-executed, we have n1 = 100, k1 = 1110, thus:

LastChar (k1) = LastChar (n1) = 0, then the condition (if) is not verified;

100 110

000 010 101 111

001 011

1

1

1

1

0

0

0

0

0

1

1

1

0

0

1 0

Fig. 3 De Bruijn graph with right shift

De Bruijn Graph Based Solution for Lookup Acceleration and…

123

• Jumped into the second loop,

• We have n1 = 10, k1 = 0111 and D = 2;

• We have: LastChar (k1) = 1 and LastChar (n1) = 0, then the condition is not verified;

• After execution of the loop, we have D = 2, then k1 is equal to 1110;

• Since D[0, we return into the first loop, we have n1 = 10, k1 = 1110, thus: LastChar

(k1) = LastChar (n1) = 0, then the condition (if) is not verified;

• Jumped into the second loop:

• We have n1 = 1, k1 = 0111 and D = 1;

• We have: LastChar (k1) = LastChar (n1) = 1, then we go back into the second loop;

• We have n1 = 1, k1 = 0011 and D = 0.

• We have also, D = 0, so we leave the second loop.

• D = 0, then k1 is equal to 0011 and outgoing from the first loop

• D = 0, then k is equal to 0011.

So, after finishing the execution of the procedure illustrated in Algorithm 4, it is pos-

sible to eliminate the common string between n and k.

3.4 Routing Algorithm

Algorithm 5 shows the new routing process that supports the changes described above; n

denotes the current requestor node, n0 the successor, k is the requested identifier; kshift is

the result of the process illustrated in Algorithm 4. The initial call made by the node n that

search the resource K is n.lookup (k, k).

Algorithm 5 uses the procedure illustrated in Algorithm 4 to eliminate the common

string, then it places the last digit of kshift in the first position of the current node, then the

last two positions in the first two, until obtaining all parts of the identifier k. The length of

the identifier is D, the complexity is D� L steps (L is the length of the string s, which is the

prefix of the current node and suffix of k).

Table 2 Algorithm 4 step by
step

n2 n1 n k1 k D H

1000 1000 1000 1110 1110 4 4

100 100 0111 3 3

1110 3 3

100 0111 0 3

10 10 1110 2 2

10 2

1 0111 1

0 0011 0011 0 0

M. Amad et al.

123

Algorithm 5 Proposed Routing algorithm
Proc n.lookup(k,kshift)
1. Begin
2. n.compar(kshift)
3. if (k==n) then
4. return n
5. else
6. begin
7. n = n α LastChar(kshift);
8. kshift = kshift α 0;
9. go to 3
10. end
11. end.

If we execute the routing algorithm on both nodes n ¼ 1000 and k ¼ 1110, as illustrated

on Fig. 4, we use the elimination procedure, then:

• We have kshift ¼ 0011,

• We have k 6¼ n, then, we execute else,

• n is equal to 1100,

• kshift is equal to 0001,

• go to instruction in line 3.

• We have k 6¼ n, then we execute the else,

• n is equal to 1110,

• kshift will be equal to 0000,

• go to instruction in line 3.

• We have k = n, then routing process is finished. The routing path is: 1000 ! 1100 !
1110 (two hops), instead of path: 1000 ! 0100 ! 1010 ! 1101 ! 1110 (four hops)

in the existing Koorde method.

Koorde with right shift
Proposed Solution

1000 1100 1110

0100 1010 1101

0001 0011 0111

0010 0101 1011

1111

0000

1001

0

0110

0

1

1

0

1

1

0

0

1

1

1

0

1

0

1

00

0

1

1

0

1 1 1

0

0

0

0

1

0

1

Fig. 4 Example of a routing process for both proposed and Koorde methods. (Color figure online)

De Bruijn Graph Based Solution for Lookup Acceleration and…

123

In Koorde method, we use right shift operation instead of left shift, because in our graph

topology, the construction is based on this operation. As shown in Fig. 4, routing path from

node 1000 to node 1110 given by our proposed solution is with solid lines (red color).

However, the given routing path from the same source to the same destination using right

shift based Koorde method is illustrated with dashed lines (blue color).

3.5 Performance Evaluation

For validation purpose, we develop a specific simulation tool (Java program), and all tests

are obtained on a PC platform with the following characteristics: 2.16 GHz and 1 GB of

RAM.

In order to evaluate the performance of the proposed algorithm, we compare it with

Koorde; one of the main existing solutions based on De Bruijn graph, in terms of cost

lookup. Five tests are performed for three different diameters (5, 6 and 7) of the used De

Bruijn graph. The obtained results are summarized in Figs. 5, 6 and 7. Test (i, j) indicates

that the source is i and the destination is j.

Figures 5, 6 and 7 show the average number of hops corresponding to a lookup request

for both Koorde and our proposed algorithm. for the three scenarios, the same source i and

destination j are considered (X-axis) and the diameters of the considered networks is

respectively 4, 5 and 6. The number of hops for both algorithms and for the three scenarios

is less than the network diameter. However, the proposed algorithm shows better perfor-

mances than Koorde, in terms of average number of hops. The average performance rate is

equal to
ð2þ3þ4þ2þ3Þ�100

5�4 ¼ 70% for the scenario represented by Fig. 5, and it is equal to
ð2þ2þ4þ2þ4Þ�100

5þ2þ5þ2þ5
¼ 73:68% for the scenario represented by Fig. 6, and it is equal to

ð5þ5þ4þ4þ3Þ�100
6þ6þ4þ6þ6

¼ 75% for the scenario represented by Fig. 7.

(2,8) (4,14)
1

1.5

2

2.5

3

3.5

4

4.5

5

(i,j)= (Source Node, Destination Node)

N
um

be
r o

f H
op

s

Koorde Model
Proposed Model

Fig. 5 Comparison with diameter equal to 4

M. Amad et al.

123

4 Conclusion and Future Works

P2P lookup acceleration and optimization is still a challenge. Specific graphs (e.g. De

Bruijn graph) have been exploited to accelerate and optimize routing process. However,

The complexity of the network management and stabilization process is critical and should

be limited.

In this paper, we have proposed a scalable solution for lookup acceleration and opti-

mization based on De Bruijn graph with right shift. The proposed solution is principally

based on the determination and elimination of the common string between source and

(2,8) (8,18)
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

(i,j)= (Source Source, Destination Node)

N
um

be
r o

f H
op

s

Koorde Model
Proposed Model

Fig. 6 Comparison with diameter equal to 5

(1, 54) (24, 40)
1

2

3

4

5

6

7

8

(i, j)= (Source Node, Destination Node)

N
um

be
r o

f H
op

s

Koorde Model
Proposed Model

Fig. 7 Comparison with diameter equal to 6

De Bruijn Graph Based Solution for Lookup Acceleration and…

123

destination. This procedure is executed locally at the current requestor node, and then it is a

rapid process.

The performance aspects of our proposed model have been validated thought simulation

results. For this, a specific java program was developed. The results we obtained show that

the proposed algorithm outperforms Koorde, in terms of cost lookup (number of hops).

In term of perspectives, we envision to measure the performances of our proposition in

environment in highly dynamic environments, with high churn rate, while taking into

consideration some physical QoS metrics such as end to end delay instead of the number of

hops.

Acknowledgments The authors would like to thank Dr. B. Rabta from SOW-VU at Vrije University,
Amsterdam for their valuable comments.

References

1. Ratnasamy, S., Francis, P., Handley, M., Karp, R., & Shenker, S. (2001). A scalable content addressable
network. New York: ACM SIGCOMM.

2. Shah, B., & Kim, K.-I. (2014). Towards enhanced searching architecture for unstructured peer-to-peer
over mobile ad hoc networks. Journal of Wireless Personal Communications, 77(2), 1167–1189.

3. Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., & Balakrishnan, H. (2001). Chord: A scalable peer-
to-peer lookup service for internet application. In Proceeding of the ACMSIGCOMM’01 (pp. 149–160).
San Diego, CA, USA.

4. Rowstron, A. I. T., & Druschel, P. (2001). Pastry: Scalable, decentralized object location, and routing
for large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM international conference on
distributed systems platforms heidelberg (pp. 329–350). London, UK.

5. Amad, M., Meddahi, A., Aı̈ssani, D., & Zhang, Z. (2012). HPM: A novel hierarchical peer-to-peer
model for lookup acceleration with provision of physical proximity. Journal of Network and Computer
Applications, 35(6), 1818–1830.

6. Amad, M., & Meddahi, A. (2008). DV-Flood: An optimized flooding and clustering based approach for
lookup acceleration in P2P networks. In The international wireless communications and mobile com-
puting conference, IWCMC08 (pp. 559–564). Greece.

7. Goodrich, M. T., Nelson, M. J., & Sun, J. Z. (2006). The rainbow skip graph: A fault-tolerant constant-
degree P2P relay structure. In Proceedings of the seventeenth annual ACM-SIAM symposium on discrete
algorithms, SODA 2006. Miami, Florida, USA.

8. Shi, C. Q., Wang D. W., Huang H., & Huang Y. (2009). A clustering route algorithm of P2P networks
based on Knödel graph. In Proceeding of 2009 international conference on signal processing systems
(pp. 837–838), Singapore.

9. Ryu, J., Noel, E., & Tang, K. W. (2012). Distributed and fault-tolerant routing for borel cayley graphs.
International Journal of Distributed Sensor Networks, 2012, Article ID 124245. doi:10.1155/2012/
124245.

10. Yasuto, S., & Keiichi, K. (2003). An algorithm for node-disjoint paths in Pancake graphs. IEICE
Transactions on Information and Systems, E86–D(12), 2588–2594.

11. Mandal, S., Chakraborty, S., & Karmakar, S. (2015). Distributed deterministic 1–2 skip list for peer-to-
peer system. Journal of Peer-to-Peer Networking and Applications, 8(1), 63–86.

12. Fraigniaud, P., & Gauron, P. (2006). D2B: A de Bruijn based content-addressable network. Journal of
Theoretical Computer Science, 355(1), 65–79.

13. Kaashoek, F., & Karger, D. R. (2003). Koorde: A simple degree-optimal hash table. In Proceeding of
the 2nd international workshop on peer-to-peer systems (IPTPS ’03), LNCS 2735 (pp. 98–107).

14. Loguinov, D., Casas, J., & Wang, X. (2005). Graph-theoretic analysis of structured peer-to-peer sys-
tems: Routing distances and fault resilience. IEEE/ACM Transactions on Networking, 13(5), 395–406.

15. Spinsante, S., Andrenacci, S., & Gambi, E. (2011). Binary De Bruijn sequences for DS-CDMA systems:
Analysis and results. EURASIP Journal on Wireless Communications and Networking,. doi:10.1186/
1687-1499-2011-4.

16. Naor, M., & Wieder, U. (2003). Novel architectures for P2P applications: The continuous-discrete
approach. In Fifteenth ACM symposium on parallelism in algorithms and architectures (SPAA) (pp.
50–59). New York, NY, USA.

M. Amad et al.

123

http://dx.doi.org/10.1155/2012/124245
http://dx.doi.org/10.1155/2012/124245
http://dx.doi.org/10.1186/1687-1499-2011-4
http://dx.doi.org/10.1186/1687-1499-2011-4

17. Naor, M., & Wieder, U. (2007). Novel architectures for P2P applications: The continous-discrete
approach. ACM Transactions on Algorithms, 3(3), 50–59.

18. El-Ansary, S., & Haridi, S. (2006). An overview of structured P2P overlay networks. In Handbook on
theoretical and algorithmic aspects of sensor, ad hoc wireless, and peer-to-peer networks. ISBN: 978-0-
8493-2832-9, Auerbach.

Mourad Amad received the engineer degree from the National
Institute of Computer Science (INI-Algeria) in 2003 and the magister
degree from the University of Bejaia (Algeria) in 2005. Currently, he is
a Ph.D. at the University of Bejaia, Member of LaMOS Research Unit.
His research interests include peer to peer networks (architecture,
application, security, VoIP).

Djamil Aı̈ssani started his career at the University of Constantine in
1978. He received his Ph.D. in 1983 from Kiev State University
(Soviet Union). He is at the University of Bejaia since its opening in
1983/1984. Director of Research, Head of the Faculty of Science and
Engineering Science (1999–2000). Director of the LAMOS research
Unit (Modelling and Optimisation of Systems—http://www.lamos.
org), Scientific Head of the Doctoral Computer School (since its
opening in 2003), he has taught at several universities (Algiers,
Annaba, Rouen, Dijon, Montpellier, Tizi Ouzou, Stif,…). He has
published many papers on Markov chains, queueing systems, relia-
bility theory, inventory, risk theory, performance evaluation and their
applications in some industrial areas as electrical networks and com-
puter systems. He was the president of the national Mathematical
Committee (Algerian Ministry of Higher Education and Scientific
Research—1995–2005).

Ahmed Meddahi is professor at Institut Mines Telecom/Telecom Lille
in the Computer Science and Networks department. He obtained a
master degree from University of Lille (France), a Ph.D. from
University of Evry and ’’Institut National des Telecommunications’’,
and ’’HDR’’ (accreditation to supervise research) from UPMC,
University Pierre et Marie Curie (Paris 6). His main research interests
are focused on IP signalling, ’’VoIP’’ performance, Qos and ’’context
aware’’ management, with a focus on P2P architectures.

De Bruijn Graph Based Solution for Lookup Acceleration and…

123

http://www.lamos.org
http://www.lamos.org

Makhlouf Benkerrou received the engineer degree from Bejaia university in 2010, his research interest is
about lookup service and data management in P2P networks.

Farouk Amghar received the engineer degree from Bejaia university in 2010, his research interest is about
lookup service and data management in P2P networks.

M. Amad et al.

123

	De Bruijn Graph Based Solution for Lookup Acceleration and Optimization in P2P Networks
	Abstract
	Introduction
	Background and Related Works
	De Bruijn Graph Concepts
	Eulerian Circuit
	Words in De Bruijn Graph

	Related Works on De Bruijn Graph Based Solutions
	D2B
	Koorde
	DH-DHT

	Proposed Solution
	Problem and Motivations
	Functional Principle
	Elimination of the Common String Between Source and Destination
	Routing Algorithm
	Performance Evaluation

	Conclusion and Future Works
	Acknowledgments
	References

