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Abstract: Monitoring of rotating machines by vibration analysis is a topic that has received a great interest in recent years.
Moreover, the vibrations from a machine are affected greatly by the conditions of its operation (speed, load and so on). A
significant challenge remains with the monitoring of gears under fluctuating operating conditions. An unexpected fault of gear
may cause huge economic losses, even personal injury. In this study, a new method based on adaptive Morlet wavelet
(AMW) is proposed for the analysis of vibration signals produced from a gear system under test in order to detect early the
presence of faults. The mother Morlet wavelet is adapted with the gear vibration signal by setting parameters of the wavelet
to balance the time–frequency resolution. The obtained optimal pair of parameters results in the best time–frequency
resolution for the given vibration signal; and the fault detection problem is considered just as a simple signature search in the
time-scale domain using scalograms. An early indication of the presence of a gear defect is obtained at the 10th day of
experimentation using the AMW-based method. Whereas, the gear system has a defect on the 12th day corresponding to the
tooth damage which results in a complete change in the location of the AMW coefficients.
1 Introduction

Monitoring of rotating machines by vibration analysis is a
topic which has received a great interest in recent years.
Initially, it was destined to make the installation safe and to
avoid significant degradation directly by triggering its
decision when the values of vibration amplitude are
considered excessive. This monitoring becomes the
foundation of a new maintenance strategy: the predictive
maintenance. Knowledge of machines and their behaviour
is not more funded by the memory of the operators. It is
not more than the sense of individuals who used to
understand the drift and evaluate the state of installation,
but supervision systems and materials are themselves poorly
monitored. The tools of the conditioned maintenance will
allow better appreciation of the ‘health’ of machines and
systems: vibration analysis, deformation, heat flow, noise
and so on. Sensors, measurement systems and data
processing provide valuable information on trends and
evolution in the behaviour of some organs. Condition of
monitoring tools facilitates also the rationalisation act of
diagnosis [1].
To diagnose early fault of rotating machines, feature

extraction of vibration signals is a very important and
difficult research task in engineering. The vibration signal
of rotating machines is usually non-stationary, non-linear
and with strong noise interference. Meantime, the early
signal energy is too low to extract fault features in the time
domain [2]. Signal processing is an approach widely used
in diagnostics, since it directly allows characterising the
state of the system. Several types of advanced signal
processing techniques have been proposed in the last
decades and added to more conventional ones [1–28]. Since
each technique has different theoretical basis, the obtained
results are also usually different. Some techniques may be
more suitable than others for a specific system or
component, depending on the environmental conditions.
Therefore, it is important to choose techniques that are most
effective for the case and the situation under testing for a
reliable diagnosis [3, 4].
Rotating machines like the compressor, steam turbine,

automotive, industrial fan and aircraft engine are widely
used in many industrial fields. How to extract the fault
features and identify the condition from the vibration
signals are the key steps in the fault diagnosis of rotating
machines [3–5]. As the fault vibration signals of rotating
machines are usually non-stationary, it is difficult to obtain
feature vectors from them for the fault diagnosis. The
traditional diagnosis techniques perform this from the
waveforms of the fault vibration signals in the time or
frequency domain, and then construct the criterion functions
to identify the working condition of a rotating machine.
However, because the non-linear factors (loads, clearance,
friction, stiffness and so on) have distinct influence on the
vibration signals because of the complexity of the
constructing and working condition of rotating machines, it
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is difficult to make an accurate diagnosis on the working
condition of rotating machines only through the analysis in
time or frequency domain [6].
The gear transmissions are present in all mechanical

machines. We find them in most industrial sectors such as
the speedbox in automobile industries. Researchers are still
very interested in the study of gear transmissions because of
their relative weakness [29–41]. Signal analysis is
considered as one of the important means used for gear
fault diagnostics. The important information and the
dominant features contained in the signals can be extracted
in order to detect faults in gear systems. The FFT-based
methods have been widely used for fault diagnostics but
they are not suitable for non-stationary signal analysis.
Since the vibration signals delivered from gears contain
non-stationary components because of gear faults, we must
find robust signal processing methods [1–28] to analyse the
non-stationary vibration signal. We can use time–frequency
transforms, such as the Wigner–Ville distribution [42] and
the short time Fourier transform (STFT) [43] to analyse
vibration signals. However, these techniques provide a
constant resolution for all frequencies because of the same
window used for the analysis of the entire signal. In order
to overcome these disadvantages, the continuous wavelet
transform (CWT) has been introduced by Morlet in 1984.
In 1985, Meyer established an interesting orthogonal
wavelet base with very good time and frequency
localisation properties. In the following year, Meyer and
Mallat introduced the multi-resolution analysis that led to
the famous fast wavelet transform [41]. The paper [44]
published by Daubechies has made wavelets more popular.
Because of the multi-scale analysis of a signal by dilation

and translation, the wavelet transform can extract time–
frequency features of a signal more effectively than the
STFTs. That is why the wavelets have been successfully
used in gear fault diagnostics [41]. The gear vibration
signals have been analysed with wavelets, by Wang and
McFadden [29] in 1993, in order to detect different types of
faults simultaneously through representing the different
scale of features in the vibration signal in a single
three-dimensional display. The research work done by
Newland in 1999 made the wavelets popular in the
vibration signal analysis in particular and in engineering
applications in general.
The square of the CWT modulus, known as scalogram, has

been used by Boulahbel et al. [45] on the residual vibration
signal of gears to detect the precise location of a tooth
defect. Several applications of scalogram have been
published in the domain of tooth defects detection in gear
systems [46–49] in which the authors have shown that the
propagating crack led to changes in vibration amplitudes
with the frequencies corresponding to the rotation frequency
harmonics [41, 50]. Further research has been carried out
on the use of phase spectrum and coefficient thresholding
of the wavelet to detect the signal discontinuities [45, 48] in
gear systems. Even though the wavelet is capable to
perform better than the FFT and STFT, it still has some
disadvantages, such as the effects of border distortion, the
energy leakage and the great sensitivity of its phase
spectrum with noise [51–53].
The detection of the early fatigue cracks in gears has been

performed by Hambala and Huff [54] using discrete wavelet
transform to decompose the vibration signals from gears.
The wavelet transformed signals are then approximated at
each level and the probability density functions (PDFs) of
the residual errors are expanded into Hermite polynomial.
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The coefficients of this expansion are used to early detect
the fatigue cracks in gears. Wang and McFadden have
applied an orthogonal wavelet transform to detect abnormal
transients generated by early damage from a gearbox
vibration signal [55]. Orthogonal wavelets, such as
Daubechies 4, were used to transform the time domain
synchronous vibration signal into the time-scale domain.
Hence, the wavelet transform permits to determine wavelet
coefficients that highlight the changes in vibration signals
predicating the occurrence of the fault; which makes
possible the early fault detection.
In this paper, an adaptive Morlet wavelet (AMW) is

applied to the analysis of vibration signals produced from a
gear transmission system under test in order to early detect
the presence of faults. Hence, a procedure is proposed in
this work, in order to adapt the mother Morlet wavelet with
the gear vibration signal by setting parameters of the
wavelet to balance the time–frequency resolution. The
output of this procedure is an optimal pair of parameters
that results in the best time–frequency resolution for the
given gear vibration signal. The translation invariance of
the AMW allows the definition of a rupture signature.
Hence, the fault detection problem will be considered just
as a simple signature search in the time-scale domain using
scalograms.
The rest of this paper is organised as follows: first, the

theoretical background of AMW in Section 2. The
simulated signals are applied to evaluate the effectiveness
of the method in Section 3. In Section 4, the proposed
method is applied in order to early detect the fault of real
gear systems. Finally, in Section 5, we give a general
conclusion.

2 Theoretical background

2.1 Continuous wavelet transform

The wavelet transform provides a combination of time and
frequency localisation, and thus it is important for analysing
non-stationary signals. The proposed method is based on
the CWT, so a brief definition of CWT is given.
The CWT of signal x(t) is defined as

CWT = |a|−1/2
∫+1

−1
x (t)C∗ t − b

a

( )
dt (1)

The function Ψ is called mother wavelet or basis wavelet [6]
and (*) is a symbol of a complex conjugate function.
The corresponding family of wavelets consists of a series

of daughter wavelets, which are generated by dilation and
translation operations from the mother wavelet c(t) shown
as follows

Ca,b(t) = |a|−1/2C
t − b

a

( )
(2)

(a) and (b) are the scaling (dilation) and translation
parameters, respectively. The scale parameter a will decide
the oscillatory frequency and the length of the wavelet, the
translation parameter b will decide its shifting position [6–8].
From the mother wavelet, all the functions of the family of

wavelets will deduct, the parameter (b) positions the wavelet
on the time axis, whereas the parameter (a) controls the
frequency of the wavelet (contraction: high-frequency
expansion: low frequency).
919
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If |a|≪ 1, the wavelet Ψa,b(t) is highly concentrated in the

mother wavelet Ψ(t) and the frequency content shifted
towards the high frequencies of the analysis plan.
If |a|≪ 1, the wavelet Ψa,b(t) is very large and the

frequency content focus on the low frequency analysis plan
[6–8].
If we vary the parameter of expansion (a), the wavelet

keeps the same number of oscillations [6].

2.2 Adaptive Morlet wavelet

There are different types of mother wavelet functions for
different purposes, such as the Haar, Daubechies, Gaussian,
Meyer, Mexician Hat, Morlet, Coiflet, Symlet, Biorthogonal
and so on. The most indispensable challenge is the
selection of the mother wavelet function as well as the
decomposition level of signal. Thus, to find a proper
wavelet function for a specific signal is very important.
In this paper, Morlet wavelet is used, because periodical

impulses which are always the symptoms of faults will
occur when there exists a fault in the Gear system; and
Morlet wavelet is very similar to those impulsive
components with any signature defect.
The Morlet wavelet is defined as a complex exponential

function in the time domain and has a shape of Gaussian
window in the frequency domain as follows

C(t) = exp j2pfct
( )

exp −t2/fb
( )

(3)

where fb is the bandwidth parameter and fc is the central
wavelet frequency.
Fig. 1 The shapes of Morlet wavelet with different (fb) and (fc)

a fb = 5, fc = 1
b fb = 15, fc = 1
c fb = 5, fc = 0.2
d fb = 5, fc = 0.5
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The parameters fb and fc control the shape of the Morlet
wavelet and balance the time–frequency resolution (Fig. 1).
Hence, there always exists a most favourable pair of
parameters fb and fc that has the best time–frequency
resolution for a certain signal localised in the time–
frequency plane.
From Fig. 1 we can observe that the shape of Morlet

wavelet depends on both parameters ( fb) and ( fc); where fb
controls the oscillation attenuation of the Morlet wavelet
and fc controls the oscillatory frequency of the Morlet
wavelet.
The Morlet wavelet transform is a linear representation,

which sums all time the signal x(t) multiplied by scaled,
shifted versions of the mother wavelet Ψ(t) in the form [6,
9, 10]

Wx(m, n) = 2−m/2
∫+1

−1
x(t)C∗ 2−mt − n

( )
dt (4)

with m [ R ; n [ R − {0}.
To find the optimal pair of parameters fb and fc, we must

use the following adaptation procedure:

(1) Choose an initial bandwidth range ( fb∈ [b1, b2]) and a
central frequency range ( fc∈ [c1, c2]).
(2) Choose an initial value for the bandwidth step (b) and the
central frequency step (c).
(3) Fix the bandwidth parameters fb to an initial value equal to
the lower bound of the bandwidth range fb, ( fb = b1).
IET Signal Process., 2014, Vol. 8, Iss. 9, pp. 918–926
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Fig. 2 The adaptation procedure of the AMW
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(4) For the whole values of fb, we determine the Morlet
wavelet defined in (3) then we compute the Morlet wavelet
transform coefficients (Wx(m, n)) defined in (4).
(5) Save the Wx(m, n) coefficients for each pair of parameters
fb and fc.
(6) Check for the maximum values of the coefficient to locate
the optimal pair of the parameters fb and fc

Wmax = Max Wx(m, n)
[ ]

(5)

where Wmax is the maximum values of the Morlet wavelet
coefficients Wx(m, n) and (Max[]) stands for taking the
maximum.
(7) Finally, an AMW (Fig. 2) is obtained.

3 Simulation analysis

This section illustrates the validity and the test of the proposed
AMW method on a simulated signal for detecting a defect
signature. These defects are separated by time intervals
where the statistical moments are constant or slightly
variable. The location of these defects may be necessary for
the segmentation and contour extraction of objects. The
AMW is applied firstly to the detection of defects in a
multiplicative noise process. Secondly, this work is done to
test the performance of the AMW in order to early detect
the presence of defects in a real gear system. The property
of translation invariance of the AMW permits the definition
of a rupture signature [11]. Hence, the detection problem is
considered as a simple signature search in time-scale
domain using scalograms. Defect detection is a critical
application in signal analysis. Defects are separated by a
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time interval where the moments are constant or variate
slightly.
The detection of defects requires specific algorithms [12].

In addition, these algorithms are not always effective in all
cases of defects. In our case, the AMW is applied to detect
the defect from a signal in the presence of a multiplicative
noise. The observation process y(t) is considered as the
product of a deterministic signal s(t) with a noise b(t)

Y (t) = b(t)s(t) (6)

where s(t) is a determinist signal and y(t) is a Gaussian white
noise.

3.1 Test 1: defect localised at t = 450 s

The application of the AMW is performed on a process
obtained by the product of a sinusoidal signal having a
defect with a Gaussian white noise. Fig. 3 represents this
simulated process and its AMW. We note that the defect
signature in the AMW coefficients domain (scalogram) is
localised at t = 450 s, so the defect is located at this time.

3.2 Test 2: Defect localised at t = 100 s

Fig. 4 illustrates the results obtained in the case of a defect
located at t = 100 s. In this case also the AMW is able to
detect the defect at t = 100 s. However, the AMW remains
the most powerful to observe clearly the rupture signature.
In Figs. 3 and 4, the optimal parameters values are fb = 5,

fi = 1.

4 Experiments on a real gear system

The effectiveness of the proposed technique is further
investigated by using the gear fault vibration signal. The
role of gearing is to transmit movement or power between
two trees with a constant speed ratio. The used materials
vary according to the use, but the most commonly used
materials are steel and cast melting. However, plastic
materials are increasingly used to transmit a low power.

4.1 Description of the system under study

The vibration signals of the gear reductor under study have
been provided from CETIM (Centre d’Etudes Techniques
des Industries Mécaniques, 52 av. Felix Louat, 60300
Senlis, France) [13, 14]. They are delivered from a reductor
operating 24 h over 24 h. The dimensions of gear wheels
together with the operating conditions (speed, couple) are
adjusted so that we obtain a spalling on all the width of a
tooth. During experimentation, the system has been stopped
every day to observe the state of the wheel teeth.
The gear system consists of two wheels with, respectively,

20 and 21 teeth. This system operates under fixed conditions
24 h/24 h.
The rotational frequencies of the two wheels are in the

range of 16.67 Hz and the frequency of meshing is in the
range of 330 Hz. The meshing signal is periodic; its
frequency is equal to the rotation frequency of the one
wheel multiplied by the number of teeth of this wheel as
below

fe = Z1 f1 = Z2 f2 (7)
921
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Fig. 4 Simulated signal for a defect localised at t = 100 s

a Signal s(t) with a defect at t = 100 s
b Gaussian white noise b(t)
c Observed process y(t)
d AMW scalogram of y(t)

Fig. 3 Simulated signal for a defect localised at t = 450 s

a Signal s(t) with a defect at t = 450 s
b Gaussian white noise b(t)
c Observed process y(t)
d AMW scalogram of y(t)
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Fig. 5 Tooth 16 in the

a 10th day
b 11th day
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where f1 is the rotation frequency of the 1st wheel, f2 is the
rotation frequency of the 2nd wheel, Z1 is the number of
teeth of the 1st wheel and Z2 is the number of teeth of the
2nd wheel.
The records are made every day for 13 days. The vibration

signal from the test has 60160 samples with a sampling
frequency of 20 KHz. One of the teeth of a gear wheel was
damaged during the experiment (Fig. 5). The different
dynamic parameters of the gear system and geometrical
parameters of the gear and pinion are given in Table 1 [13–16].

4.2 Results and discussions

Given the large number of data (60160 samples), it is difficult
to treat them all. Hence, we must choose a reduced number of
data without losing information about the system. For this, we
must at least cover a period. We have the rotational frequency
16.67 Hz and the sampling frequency fsap = 20 KHz. To
calculate the number of samples covering the period, we
divide the rotation period T on the sampling period. Hence,
the number of obtained samples will be 1200 samples. We
choose a number of 1500 samples.
The temporal representations of the signal emitted by the

system for each day are given in Fig. 6.
We note that during the first eleven days, the temporal

representation of the vibration meshing signal does not give
further evidence characterising the occurrence of a fault.
In contrast, at the twelfth and the last days, the

representations are different; which indicates the presence
of a defect because of the deterioration of a tooth. The
Table 1 Geared system data

Parameter Pinion Gear

speed, rpm 1000 952
number of teeth 20 21
face width, m 0.015 0.03
shaft diameter, m 0.092 0.110
module, m 0.01 0.01
pressure angle 20° 20°
addendum coefficient 1.0 1.0
dedendum coefficient 1.4 1.4
mass, N 36 80
shaft torsional stiffness, N m/rad 1917 3383
bearing stiffness, N/m 108 109

shaft viscous damping coefficient, N s/rad 0.2688 0.3571
bearing viscous damping coefficient, N s/m 8740.15 8740.15
drive torque, N m 200

Fig. 6 CETIM gear vibration signals recorded during

a 8th day
b 9th day
c 10th day
d 11th day
e 12th day. Displaying over two periods of rotation relative to the pinion
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Fig. 7 AMW scalograms of CETIM gear vibration signals using
the maximum Morlet wavelet coefficients as a cost function

a 8th day
b 9th day
c 10th day
d 11th day
e 12th day
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vibration signal retains the same shape until the 12th day
during which the fault appears. We note that a shock occurs
at a time corresponding to the rotation period of the gear
system and having very high amplitude compared with the
signal collected during the other days. These observations
allow the diagnosis of a fault in the 12 and 13th days.
The representation of the vibration signal using the AMW is

the goal of our work. This representation is used to early detect
the failure of gears in the time-scale domain and try to identify
it. The scalograms obtained by the application of the AMW,
using the maximum Morlet wavelet coefficients as a cost
function, on the vibration signal emitted by the gear system
during the 13 days of experimental test are shown in Fig. 7.
The optimal parameter values are fb = 15.8, fc = 0.69.
In the AMW domain, the coefficients are stable and have

similar magnitudes until the 9th day.
At the 10th day, the coefficients start changing their

behaviour. We observe the absence of a part of the band on
the AMW scalogram. This is an early indication of the
presence of a gear defect. The gear system has a defect on
the 12th day corresponding to the tooth damage which results
in a complete change in the location of the AMW coefficients.

5 Comparison of our technique with other
techniques proposed in the literature

Several techniques, based on AMW, have been proposed in the
literature for feature extraction of gear vibration signals [52, 56,
57]. Most of these methods utilise modified Shannon wavelet
entropy as a cost function to optimise central frequency and
bandwidth parameter of the Morlet wavelet in order to
achieve optimal match with impulse components.
The modified Shannon wavelet entropy is computed by [56]

Hk fb
( ) = −

∑M
i=1

Pk
i logP

k
i ,

∑M
i=1

Pk
i = 1,

fc = k [ [J , K]

(8)

where Pk
i is the distribution sequence obtained from wavelet

coefficients. Pk
i is calculated by

Pk
i fb
( ) = Wx(m, n)

∣∣ ∣∣/∑M
j=1

Wx(m, n)
∣∣ ∣∣ (9)

These approaches perform well when applied to feature
extraction of vibration signals resulting from rolling element
bearing defects or gearbox faults. However, these
techniques have not been applied to early detect the fatigue
cracks in these rotating mechanical elements.
In this paper, we have applied the AMW based on the

modified Shannon wavelet entropy to the vibration signals
of the gear reductor provided from CETIM. This
application will be used to compare the performances of
our technique, based on the maximum values of Morlet
wavelet coefficients as a cost function, with the methods
based on the modified Shannon wavelet entropy. The
optimal parameter values are fb = 20.2, fc = 0.5.
Fig. 8 represents the scalograms obtained by the

application of AMW, based on the modified Shannon
wavelet entropy, on the vibration signal emitted by the
CETIM gear system during the 13 days of experimental
test. From this figure, the tooth crack failure of gearbox has
not been observed until the 12th day where the AMW
IET Signal Process., 2014, Vol. 8, Iss. 9, pp. 918–926
doi: 10.1049/iet-spr.2013.0439



Fig. 8 AMW scalograms of CETIM gear vibration signals using
modified Shannon wavelet entropy as a cost function

a 8th day
b 9th day
c 10th day
d 11th day
e 12th day
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coefficients change their behaviour. Hence, there is no early
indication of the presence of a gear defect.
From this example, it can be seen that our method, based

on maximum values of Morlet wavelet coefficients as a cost
function, is more effective for the early detection of the
presence of a gear defect than the techniques based on
modified Shannon wavelet entropy. In fact, our method can
early indicate the presence of a gear defect at the 10th day
by observing the absence of a part of the band on the
AMW scalogram (Fig. 7).

6 Conclusions

In the present contribution, a new fault diagnosis approach for
gear systems was proposed. This approach is based on the
AMW, which is used to early detect the presence of defects
by searching a rupture signature in the vibration signal
delivered from a gear transmission system. Hence, a
procedure is proposed in this work, in order to adapt the
mother Morlet wavelet with the gear vibration signal by
setting parameters of the wavelet to balance the time–
frequency resolution. The output of this procedure is an
optimal pair of parameters that results in the best time–
frequency resolution for the given gear vibration signal. The
translation invariance of the AMW allows the definition of
a rupture signature. Consequently, the fault detection
problem will be considered just as a simple signature search
in the time-scale domain using scalograms.
In our work, the AMW is first applied to detect a defect

from a simulated process obtained by the product of a
deterministic sinusoidal signal with a Gaussian white noise.
We note that the defect signature in the AMW coefficients
domain (scalogram) is detected at the right time. Through
the application of the proposed AMW method to the
simulated signal, the effectiveness of the proposed
technique for detecting the defect in the signal with the
presence of a multiplicative noise has been proved.
Secondly, for real gear system, the AMW is applied to
early detect the gear fault. The scalograms obtained by the
application of the AMW on the vibration signal emitted by
the gear system during the 13 days of experimental test
have shown that the wavelet transform coefficients are
stable and have similar magnitudes until the 9th day. At
the10th day, the coefficients start changing their behaviour
through the observation of the absence of a part of the band
on the AMW scalogram. This is an early indication of the
presence of a gear defect. The gear system has a defect on
the 12th day corresponding to the tooth damage which
results in a complete change in the location of the AMW
coefficients. Thus, these results have shown the powerful
features of the proposed technique in the early detection of
gear faults. The proposed method is simple to implement.
Future work will investigate the proposed methodology on

a range of more representative data. However based on this
initial investigation, it is believed that the proposed
methodology offers an intuitive and cost effective approach
which can be used to visualise the condition of a gearbox
and serve to support maintenance decisions.
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