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A B S T R A C T

This paper presents a new approach for faults classification in analog integrated circuits using a multiclass
adaptive neuro fuzzy inference system classifier. This is carried out to assist analog circuit's faults diagnosis
suffering from inaccurate faults classification on one hand, and to lessen computational burden on the other hand.
This has been achieved from features number reduction. These features serving as input feature vector are
extracted from the selected circuits (CUT) frequency and transient responses under both fault free and faulty
conditions. The considered faults are resistors and capacitors values variations of about 50% low and high from
their nominal ones. The method accuracy has been validated with three experiment circuits, the Sallen Key band-
pass, the four opamp biquad high-pass and the leapfrog filters. The obtained results reveal a high level of effi-
ciency with an accuracy average reach to 99.76%. Hence, the proposed method has shown a good performance in
term of fault classification accuracy when compared with those of both the Artificial Neural Networks (ANN)
approach and the fractional Fourier transform (FRFT) method based on a statistical property.
1. Introduction

Due to the poor fault models, component tolerances and the circuits'
nonlinear behavior, the fault diagnosis of analog integrated circuits be-
comes more complicated. Therefore, the development of efficient
methods for fault detection and classification in analog circuits still the
main needed project of many researchers.

The fault diagnosis systems main functions are fault detection, fault
isolation, Fault identification, Fault prediction, Fault explanation and
Fault simulation [1]. Feature extraction methods are strictly related to
the efficiency of fault diagnosis for analog circuits.

Hard faults and soft faults are the main categories of faults in analog
circuits. The first ones are also known as catastrophic faults, whereas soft
faults are considered as parametric faults [1], more details are given in
section 2. However, the research proposals are dealing mostly with the
parametric fault detection since the second category faults are difficult to
detect. But it becomes easy to locate hard faults, to isolate and to correct
them as well. In this perspective, there are two approaches of analog
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circuits fault diagnosis: the simulation before test approach (SBT) and the
simulation after test approach (SAT). In the SAT attitude, fault diagnosis
is obtained by extracting the circuit parameters from the CUT measured
responses. The SBT approach compares the CUT responses with the
predefined fault values in the fault dictionary, and thus helping to locate
the faults. Besides, this approach has confirmed a test and computing
time reduction even for complex circuits that, unfortunately the other
approach (SAT) is still suffering of the lack of this performance.
Furthermore, fault detection and fault isolation are achieved by means of
a classification system which provides a decision based on deviations
between the actual CUT responses and the stored ones.

Different methods for fault detection and classification were proposed
in various literature. For instance, the authors in literature [2] have
developed a statistical property feature extraction based on FRFT. In this
method, optimal features were derived using Kernel principal component
analysis (KPCA), and support vector machine (SVM) to diagnose faulty
components in analog circuits. The literature [3] has dealt with a Fuzzy
Inference System (FIS) constructed to model and classify faults in analog
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Fig. 1. Process of fault classifier building for fault classification in the CUT.
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circuits. Then, hybrid neuro-fuzzy systems were also built and trained to
isolate faults of the CUT. The authors of [4] have presented the
Neuro-Fuzzy System to Time Domain for fault diagnosis of electronic
circuits. The proposed neural network classifier has aimed to solve the
problem of distinguishing between healthy and faulty circuit. Hence, a
neural dictionary was created to locate fault and fuzzy logic was used to
translate a measurement vector into a zero-one range for fault classifi-
cation. Another research work of has proposed a fuzzy classifier to pro-
vide single and multiple fault diagnosis with the variation in the
components value below �50% [5]. This technique was based on three
signature parameters: peak gain, its frequency and its phase of the CUT
frequency response were used as features to train classifier. Some fault
diagnosis methods are based on signal processing. The authors have
proposed in here a fractional wavelet transform technique (FWT) to
extract fault features [6]. A fuzzy multi-classifier based on the Support
Vector Data Description (SVDD) has been adopted to diagnose faults in
analog circuits.

Multi frequency approach has been optimized for fault diagnosis [7].
Consequently, both the test frequencies number for fault diagnosis and
the simulation time required have been reduced. Authors in Ref. [8]
propose wavelet transform coefficients as features to train classifier.
Generally, feature extraction and classifier application represent the
main steps of the data driven methods, such as neural networks (ANNs)
and support vector machines (SVMs), to locate the faults [9]. In Ref. [10],
transient feature extraction approach using the optimizedMorlet wavelet
transform was proposed to solve the problem in the weak transient
detection. Authors in Ref. [11] propose a method for faults diagnosis in
analog circuits, using features extracted from the time frequency re-
sponses and an improved vector-valued regularized kernel function
approximation (VVRKFA).

In fact, many other methods can be found in a wide and various
literature. They all of them deal with a same target of finding an accurate
fault classifier but involving different approaches such as a digital
signature analysis [12], A statistical approach [13], BP neural networks
[14], the hybrid evolutionary algorithm and neural network use [15],
network parameters and neural networks [16,17].

In this paper, a novel fault detection and classification approach is
proposed. Classifier features were extracted from the frequency and the
transient responses for the classifier training. The features number was
reduced by using variable dimensionality reduction technique to lessen
time of the classifiers requirement.

The novel contribution of this study is to integrate the appropriate
membership function type with their number optimization, and input
features reduction to achieve a high accuracy classification. This method
is validated through a Sallen-Key band-pass filter, a four op-amp biquad
high-pass filter and a leapfrog filter.

The paper is organized as follows: section 2 presents the main types of
faults in analog circuits. The neuro-fuzzy classifier development and the
concept of the proposed classifier with two inputs (binary) are given in
section 3. Section 4 discusses the simulation result of the experiment
circuits. Section 5 exhibits the experimental results and discussion about
the proposed constructed classifier and its features reduction achieve-
ment. This has been followed by the actual classifier approach efficiency
evaluation and comparing it with those of the ANN's and the statistical
property based FRFT method classifier. Finally, section 6 concludes the
proposed classifier method along with future work.

2. Faults in analog integrated circuits

Faults in the analog integrated circuits are classified into two cate-
gories: hard faults and soft faults [1]. Hard faults are also known as
catastrophic faults, In this case, the faulty component may be short
circuited, open circuited or apparition of large deviation in the circuit
elements design parameter. Hard faults are generally caused by the
electromigration and particle contamination phenomena occurrence in
the conducting and metallization layers.
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Soft faults are also called parametric faults. This fault type is caused
by element value change or its deviation from the nominal values. The
presence of these faults in the analog circuits degrades the performance
of the circuit. The deviation recorded on the component nominal value
which is out of the tolerance band is attributed to either the circuit
ageing, or manufacturing tolerances or parasitic effects in the circuits.

According to both the faults number and their occurrence, faults in
analog integrated circuits are mainly categorized into two types: single
faults and multiple faults. However, the huge amount of work that the
study of the whole types of faults will require has driven us to focus our
attention on single faultswhile the second fault type is left for futurework.

3. Neuro-fuzzy classifier building

Adaptive Neuro Fuzzy Interface System (ANFIS) is one of the greatest
trades off among ANNs and fuzzy logic systems. They offer smoothness
owing to the interpolation and adaptability of fuzzy control and to the
ANN back propagation. ANFIS provides a technique for the fuzzy
modeling procedure to attain information about a data set, in order to
compute the membership function parameters that best allow the asso-
ciated fuzzy inference system to track the given input/output data [3].
ANFIS is a class of ANN, which is based on fuzzy interface system and
incorporates both ANN and fuzzy logic principles and has benefits of both
techniques in a single framework. The necessary steps for the process of
neuro fuzzy classifier are illustrated in Fig. 1:

� Simulation Monte-Carlo of the CUT under fault and fault free
conditions;

� Features extraction;
� Features reduction;
� Classifiers training and testing;
� Classifiers synthesis and final decision.
3.1. Neuro-fuzzy classifier principal

Fuzzy systems are able to hold uncertain and inaccurate information,



Fig. 2. ANFIS architecture model with two inputs, one output and two rules.

A. Arabi et al. Integration, the VLSI Journal 64 (2019) 50–59
but cannot update and fine tune their parameters automatically. To
overcome this disadvantage, a neural network learning algorithms were
applied, by training data set [19]. A Sugeno-type fuzzy Inference System
(FIS) is used, whose the consequent is constant: this FIS type is known as
zero-order Sugeno type [20].

The applied neuro-fuzzy system procedure as depicted in Fig. 2 uses a
simple architecture. To explain the procedure principle, we assume the
ANFIS structure has two inputs, with maximum amplitude of frequency
response (I1) and its center frequency (I2) as input features, and one
output (Z) representing a fault class. In case of two existing rules only and
according to the zero-order Sugeno type classifier, outputs are computed
by summing of two functions (f1 ; f2) as follow:

▪ f1: is computed by the rule:

If I1 is A1 and I2 is B1, then

f1 ¼ p11 � I1 þ p12 � I2 þ r1 (1)

▪ f2: is computed by the rule:

If I1 is A2 and I2 is B2, then

f2 ¼ p21 � I1 þ p22 � I2 þ r2 (2)

where Ai and Bi are the fuzzy sets, fi is the output, pij and ri (i ¼ j ¼ 1; 2),
are the consequents parameters. The ANFIS architecture used to imple-
ment the two rules is shown in Fig. 2. Squares represent adaptive nodes,
where circles represent the fixed nodes.

The structure of ANFIS includes five layers that can be described as
follows:

a) Layer 1: Features layer

For this layer, the output of the node i is calculated by the equations:

O1
i ¼ μA1ðI1Þ for i ¼ 1; 2 (3)

Or

O1
i ¼ μB�2ðI2Þ for i ¼ 1; 2 (4)

where, I1 and I2 are the crisp features that feed the input of the node i. Ai

and Bi are linguistic terms related with their proper membership func-
tions, characterized by appropriate membership functions μAi and μBi�2,
respectively. O1

i is the output of the ith node of the layer. Membership
functions for linguistic terms can be any appropriate membership func-
tions. In this example, trapezoidal membership functions are used.
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>>>>> 0; I1 � ai
μAi ¼

8
>>>>>><
>>>>>>>>>>>:

I1 � ai
bi � ai

; ai � I1 � bi

1; bi � I1 � ci
di � I1
di � ci

; ci � I1 � di

0; di � I1

(5)

μBi ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

0; I2 � ai
I2 � ai
bi � ai

; ai � I2 � bi

1; bi � I2 � ci
di � I2
di � ci

; ci � I2 � di

0; di � I2

(6)

where μAi and μBi are the membership functions. ai, bi, ci and di are the
parameters that change by the training algorithm to arrangement with
training data set. Hence, the trapezoidal function varies consequently.

b) Layer 2: Rules layer

In this layer, the nodes provide a sacking strength O2
i , and it is the

product of all outputs resulted from layer one. No parameter to be
adjusted, so it represents a fixed node.

O2
i ¼ wi ¼ μAi

ðI1Þ μBi ðI2Þ; i ¼ 1; 2 (7)

c) Layer 3: Normalization layer

The node i of the normalization layer takes the ratio of the ith rule's
firing strength to the sum of all rule's firing strengths. The outputs of this
layer are called normalized firing strength.

O3
i ¼ wi ¼ wiP

iwi
; i ¼ 1; 2 (8)

d) Layer 4: Consequent layer

Every node i in this layer is an adaptive node. The node function of the
fourth layer computes the contribution of each ith rule's toward the total
output. The output of the node i of this layer is computed by the following
function:

O4
i ¼ wifi i ¼ 1; 2 (9)

where, wi is a normalized firing strength from the layer 3. The formulas
that compute fi are given in equation (1) and equation (2).

e) Layer 5: Output layer

The single node in this layer is a fixed node labeled sum and computes
the overall output as the summation of all incoming signals. Therefore,
the process of Defuzzification is achieved by getting a crisp general
output.

O5
i ¼

X
i

wifi ¼
P

iwifiP
iwi

; i ¼ 1; 2 (10)

We note that the above described ANFIS classifier is just an example.
In the following we will use more inputs and more rules will be also
generated using learning algorithms.



Fig. 3. Concept of multiclass neuro-fuzzy classifier.

Fig. 4. Sallen-Key band pass filter circuit.

Table 1
Nominal and fault values for a Sallen-Key band pass filter.

Fault ID Element Nominal value Fault type Faulty value

F0 – – FF
F1 R1 1 kΩ R1þ50% 1.5 kΩ
F2 R1 1 kΩ R1-50% 0.5 kΩ
F3 R2 3 kΩ R2þ50% 4.5 kΩ
F4 R2 3 kΩ R2-50% 1.5 kΩ
F5 R3 1 kΩ R3þ50% 1.5 kΩ
F6 R3 1 kΩ R3-50% 0.5 kΩ
F7 C1 5nf C1þ50% 7.5 nF
F8 C1 5 nF C1-50% 2.5 nF
F9 C2 5 nF C2þ50% 7.5 nF
F10 C2 5 nF C2-50% 2.5 nF

A. Arabi et al. Integration, the VLSI Journal 64 (2019) 50–59
3.2. Multiclass classification approach

In this study, we can use a collection of classifiers that is called
multiclass classification. In this case, results decisions are compared by
using “winner-takes-all” rule as presented in Fig. 3. Each classifier feed
this rule by a crisp class label which is assigned to the output (Z). The
final class label of Z is the one that have the major crisp value at the
outputs of the classifiers group.

If the result at the classifier output i, is di then the label L at the output
of the over mentioned rule is computed by:

L ¼ maxðdiÞ (11)

3.3. Classifiers performance evaluation criterions

The classifier performance will be evaluated by using two statistical
criterions: root mean squared error and correlation coefficient. This al-
lows us to compare it to other type of classifier.

The root mean squared error (RMSE) is given by the following
expression:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðmi � piÞ2
n

s
(12)

The correlation coefficient (R2) is given by the following expression:

R2 ¼ 1� SSEPn
i¼1p

2
i

(13)

where (SSE) represents a sum square error that is given by the following
expression:

SSE ¼
Xn

i¼1

ðmi � piÞ2 (14)

mi is the actual value, Pi is the predicted output of the classifier, and n is
the number of inputs data.

4. Example circuits and experiment simulation results

The proposed fault classification system employed to detect and
classify faults of analog circuits is validated by three example circuits, a
Sallen–Key band-pass filter, a four opamp biquad high-pass filter and a
leapfrog filter. In this study, single parametric faults have only been
considered.
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4.1. First circuit: a Sallen–Key band-pass filter

The first CUT used in this paper is a Sallen–Key band-pass filter [2]
(Fig. 4). The resistors and capacitors tolerance values are set to 5% and
10%, respectively.

In this experiment circuit, we use the single pulse of 5 V pick ampli-
tude and duration of 10 μs which have been adopted in Ref. [2] as input
of the CUT in time domain. An AC signal with magnitude of 5 V is used as
input of the CUT in the frequency domain. A transient and an AC signal
analysis have been carried out under PSPICE simulator in order to obtain
frequency and time domain responses. Therefore, the nominal and the
fault values of components are shown in Table 1. The fault classes include



Fig. 5. The fault free CUT Frequency response using Monte-Carlo simulation for
200 runs.

Fig. 6. The fault free CUT transient response using Monte-Carlo simulation for
200 runs.

Fig. 7. Features extraction of the fault free CUT frequency response.

Fig. 8. Features extraction of the fault free CUT transient response.
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R1, R2, R3, C1 and C2 values varied by 50% lower and higher than their
nominal values and fault free class (FF).

In order to generate the simulation fault data according to the fault
classes in Table 1, a frequency domain analysis, time domain transient
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analysis and Monte Carlo analysis using ORCAD software are used [18].
Therefore, the simulated data for each fault class are 200 sets. Then, 200
original samples for each fault class are divided into 100 training feature
vectors and 100 testing samples.

4.1.1. Simulation results
The frequency response of the fault free CUT is represented in Fig. 5

and the transient response curve is represented in Fig. 6.

4.1.2. Features generation
Feature generation is a process which makes a map from raw data to

the classifier input. This is aimed to build more efficient features for fault
detection and classification task.

From the frequency and the transient responses presented in Figs. 7
and 8, features: I1, I2, I3, I4, I5 and I6 were extracted for both healthy
and faulty CUT using the following formulas:

a. Feature 1: Frequency response maximum amplitude (I1)

This first classifier feature represents the pick or the maximum value
of the frequency response curve.

I1 ¼ maxðVFoutÞ (15)

b. Feature 2: center frequency (I2)

The center frequency represents the midpoint frequency in between
the -3 dB cutoff frequencies of a band pass filter. The -3 dB cutoff points
are also referred to as the lower cutoff frequency (f1) and upper cutoff
frequency (f2) of a filter.

I2 ¼ fr ¼ f1 þ f2
2

(16)

c. Feature 3: Bandwidth (I3)

The bandwidth (BW) is the difference between lower and upper cut-
off frequencies (f1 and f2).

I3 ¼ f 2� f 1 (17)

d. Feature 4: Transient response pulse width (I4)

The pulse width (PW) is the elapsed time between the rising and the
falling edges (t1, t2) of the transient response. To make this measurement
repeatable and accurate, we use the 50% power level as the reference
point.

I4 ¼ t2� t1 (18)

e. Feature 5: Transient response maximum point (I5)

This feature represents the maximum point value of the transient
trace.

I5 ¼ maxðVToutÞ (19)

f. Feature 6: Transient response minimum point (I6)

This feature is chosen as the maximum value of the transient trace.

I6 ¼ minðVToutÞ (20)



Fig. 9. Four opamp biquad high-pass filter.

Table 2
Nominal and fault values for a four opamp biquad high-pass filter.

Fault ID Element Nominal value Fault type Faulty value

F0 – – FF –

F1 R1 6.2 kΩ R1þ50% 9.3 kΩ
F2 R1 6.2 kΩ R1-50% 3.1 kΩ
F3 R2 6.2 kΩ R2þ50% 9.3 kΩ
F4 R2 6.2 kΩ R2-50% 3.1 kΩ
F5 R3 6.2 kΩ R3þ50% 9.3 kΩ
F6 R3 6.2 kΩ R3-50% 3.1 kΩ
F7 R4 1.6 kΩ R4þ50% 2.4 kΩ
F8 R4 1.6 kΩ R4-50% 0.8 kΩ
F9 C1 5 nF C1þ50% 7.5 nF
F10 C1 5 nF C1-50% 2.5 nF
F11 C2 5 nF C2þ50% 7.5 nF
F12 C2 5 nF C2-50% 2.5 nF
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4.2. Second circuit: a four opamp biquad high-pass filter

The second example circuit to be tested is a four opamp biquad high-
pass filter, which is used as a CUT in Ref. [2]. The nominal values of all
the components are shown in Fig. 9. Inputs signals are also single pulse of
5 V pick amplitude and duration of 10 μs in time domain, and an AC
signal with magnitude of 5 V in the frequency domain. The circuit
simulation has been run under the same software as the first circuit for
both transient and AC analysis. The tolerance of resistors and capacitors
are set to 5% and 10%, respectively. The nominal and the fault values of
components are shown in Table 2. Therefore, in the experiment, the
transient and the frequency responses have been collected for 12 single
faulty and fault free (FF) circuit to verify our proposed method's accu-
racy. These selected faults are dealt with the fault classes that include R1,
R2, R3, R4, C1 and C2 whose nominal values are varied by less and more
than 50%.

4.3. Third circuit: a leapfrog filter

The third example circuit to be tested is a leapfrog filter, which is
designed with Current Feedback Operational Amplifiers (CFOAs). The
nominal value of each component is labeled in Fig. 10 and the tolerance
of resistors and capacitors are set as 5% and 10%, respectively. Inputs
signals are sinusoidal signal of 5 V pick amplitude and frequency of
1 KHZ in time domain, and an AC signal with magnitude of 5 V in the
frequency domain. Therefore, in this experiment, 24 single fault cases are
selected to verify our proposed method's classification accuracy. Fault
classes are shown in Table 3.
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5. Experimental results and discussion

In this section, we exhibit firstly the proposed method for feature
dimensionality reduction is proposed and its application to the group of
classifiers relating to an appropriate circuit. We enumerate 10 classifiers
for the first CUT, 12 classifiers for the second CUT and 24 classifiers for
the third CUT. Then, the proposed multi-class neuro-fuzzy classifier was
trained and tested with the reduced whole original feature space, which
is defined by a vector of all features. Finally, the proposed classifier will
be compared to an ANN classifier and the method based on statistical
property features in fractional domain based on FRFT proposed in
Ref. [2].

5.1. Results for the Sallen-Key band pass filter

a. Classifier Features reduction
Features selection is an important stage for each classifier. Whereas,

constructed features have the same effect on the classifier performance.
So, the reducing of feature dimensionality is more needed. This process
step leads to evade redundant information, and also eliminating features
that have no effect on the classifier decision. For these reasons, a feature
dimensionality reduction technique is applied to pick the best features
set, and cuts down dimensionality of the classifier input.

An algorithm is developed to choose automatically a subset of fea-
tures that will be used for training and testing the classifier. Then, the
built model will be stored with its performance for further usage. This
process is repeated until all features combinations are generated. Finally,
all classifier performances are compared, and the features will be
retained for a specified fault type classification as illustrated in Table 4
bellow.

An ANFIS classifier was built for each combination, the obtained
classifiers are performed according to their RMS error, and the most
appropriate combination predicting the classifier output is retained.

In this study, ten classifiers are considered for the Sallen-Key band-
pass filter: ANFIS-1 (F1 classifier), ANFIS-2 (F2 classifier), ANFIS-3 (F3
classifier), ANFIS-4 (F4 classifier), ANFIS-5 (F5 classifier), ANFIS-6 (F6
classifier), ANFIS-7 (F7 classifier), ANFIS-8 (F8 classifier), ANFIS-9 (F9
classifier) and ANFIS-10 (F10 classifier). The best combination of fea-
tures is selected for each one of them, as shown in Table 4 (Bold number
indicate the optimal values of RMSE and the best selected combination of
features).

From the Table 4, results of selecting classifiers inputs are presented.
The best combination of features has been hold for the classifier evalu-
ation. We can clearly see that the training and the testing errors are
reduced by increasing the selected features number. Therefore for some
classifiers, increasing the number of features from 3 to 4 does not mini-
mize much the training and the testing errors. Thus, this will neither
achieve the classification efficiency nor improve the classification accu-
racy. For these reasons, only three features will be selected for these
classifiers and which are ANFIS-2, ANFIS-8 and ANFIS-10.

b. ANFIS Membership function type and number optimization
After features selection step, an efficient method has been adopted to

select the best ANFIS model, based on the decreasing of Root Mean
Square Error (RMSE), and increasing the accuracy of the considered ar-
chitecture for each classifier.

The main parts of the multiclass neuro-fuzzy classifier to be designed
consist of the membership functions type (triangular, trapezoidal,
generalized bell-shaped, Gaussian, Pi-shaped curve and Dsig-shaped
curve). The classifier output is a linear combination of its inputs
(Sugeno fuzzy inference system) [20]. During the optimization process,
different built-in membership functions (MFs) types has been involved to
choose the most appropriate one for the classifier model development as
shown in Table 5 below.

The optimized membership function types and number for each
classifier are presented in Table 6 bellow:



Fig. 10. A leapfrog filter circuit.

Table 3
Nominal and fault values for a leapfrog filter.

Fault ID Element Nominal value Fault type Faulty value

F0 – – FF –

F1 R1 10 kΩ R1-50% 5 kΩ
F2 R1 10 kΩ R1þ50% 15 kΩ
F3 R2 10 kΩ R2-50% 5 kΩ
F4 R2 10 kΩ R2þ50% 15 kΩ
F5 R3 10 kΩ R3-50% 5 kΩ
F6 R3 10 kΩ R3þ50% 15 kΩ
F7 R4 10 kΩ R4-50% 5 kΩ
F8 R4 10 kΩ R4þ50% 15 kΩ
F9 R6 10 kΩ R6-50% 5 kΩ
F10 R6 10 kΩ R6þ50% 15 kΩ
F11 R7 10 kΩ R7-50% 5 kΩ
F12 R7 10 kΩ R7þ50% 15 kΩ
F13 R8 10 kΩ R8-50% 5 kΩ
F14 R8 10 kΩ R8þ50% 15 kΩ
F15 R10 10 kΩ R10-50% 5 kΩ
F16 R10 10 kΩ R10 þ 50% 15 kΩ
F17 C1 10 nF C1-50% 5 nF
F18 C1 10 nF C1þ50% 15 nF
F19 C2 20 nF C2-50% 10 nF
F20 C2 20 nF C2þ50% 30 nF
F21 C3 20 nF C3-50% 10 nF
F22 C3 20 nF C3þ50% 30 nF
F23 C4 10 nF C4-50% 5 nF
F24 C4 10 nF C4þ50% 15 nF
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For the first circuit to test, the best membership function for each
classifier is as follows:

� ANFIS 1: generalized bell-shaped membership function with number
of three.

� ANFIS 2: Gaussian membership functions with number of four.
� ANFIS 3: Pi-shaped membership functions with number of three.
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� ANFIS 4: generalized bell-shaped membership function with number
of four.

� ANFIS 5: triangle-shaped membership functions with number of four.
� ANFIS 6: generalized bell-shaped membership function with number
of four.

� ANFIS 7: Trapezoidal membership functions with number of four.
� ANFIS 8: Gaussian membership functions with number of four.
� ANFIS 9: triangle-shaped membership functions with number of four.
� ANFIS 10: Gaussian membership functions with number of four.

c. Fault Classification with artificial neural network (ANN) classifier
For comparisons purpose, the designed multiclass neuro-fuzzy clas-

sifier has been compared to the artificial neural network (ANN) one (See
Table 7), which is a multilayer feed-forward perception (MLP) with one
hidden layer. For fast optimization of the network, a Levenberg-
Marquardt (LM) back-propagation algorithm has been applied (Fig. 11).

This comparison shows clearly the superiority of the neuro-fuzzy
classifier over traditional ANN-classifier. Moreover, the proposed clas-
sifier can be used to further improve these important results as it shown
in Table 7.

The comparison of the classification accuracy with method used in
Ref. [2] and ANN classifier is presented in Table 8, from which it can be
concluded that the proposed classifier has a better gratitude capability.

From the comparison between the three methods, it is thus clear that
the proposed method based on neuro-fuzzy classifier has produced the
best classification accuracy for the major classifiers (from F3 to F10),
which has an average equal to 99.76%. However, the method using in
Ref. [2] and the ANN method have provided classification accuracy av-
erages of 98.57% and 97.42% respectively.

5.2. Results for the four opamp biquad high-pass filter

All the test steps being followed with the first circuit are applied to
test the four opamp biquad high pass filter to prove the classification



Table 4
Features selection for classifiers of the Sallen_Key band pass filter.

ANFIS-NB Total number of
features

6 6 6 6

Selected features 1 2 3 4

ANFIS-1 RMSE (Training) 0.1716 0.0901 0.0621 0.0371
RMSE (Testing) 0.1789 0.0912 0.0671 0.0477
Best combination
of features

I1 I3 I6 I1 I3 I6 I1 I2 I3 I5

ANFIS-2 RMSE (Training) 0.2543 0.1542 0.1383 0.1009
RMSE (Testing) 0.2555 0.1590 0.1459 0.1082
Best combination
of features

I5 I2 I5 I2 I4 I6 I2 I4 I5 I6

ANFIS-3 RMSE (Training) 0.2396 0.0719 0.0309 0.0154
RMSE (Testing) 0.2409 0.0732 0.0368 0.0242
Best combination
of features

I2 I2 I3 I2 I5 I6 I1 I2 I5 I6

ANFIS-4 RMSE (Training) 0.2192 0.1200 0.0630 0.0481
RMSE (Testing) 0.2215 0.1230 0.0770 0.0621
Best combination
of features

I3 I2 I3 I1 I2 I3 I1 I3 I5 I6

ANFIS-5 RMSE (Training) 0.1441 0.0446 0.0187 0.0114
RMSE (Testing) 0.1427 0.0495 0.0188 0.0137
Best combination
of features

I3 I3 I6 I2 I3 I6 I1 I2 I5 I6

ANFIS-6 RMSE (Training) 0.1715 0.0999 0.0495 0.0326
RMSE (Testing) 0.1806 0.1072 0.0598 0.0410
Best combination
of features

I5 I2 I6 I1 I5 I6 I1 I2 I5 I6

ANFIS-7 RMSE (Training) 0.2552 0.0839 0.0596 0.0314
RMSE (Testing) 0.2550 0.0890 0.0612 0.0456
Best combination
of features

I3 I1 I3 I1 I3 I6 I1 I2 I3 I5

ANFIS-8 RMSE (Training) 0.2627 0.1676 0.1294 0.0951
RMSE (Testing) 0.2610 0.1764 0.1343 0.1083
Best combination
of features

I5 I2 I5 I3 I4 I6 I2 I4 I5 I6

ANFIS-9 RMSE (Training) 0.2542 0.0722 0.0241 0.0138
RMSE (Testing) 0.2554 0.0721 0.0232 0.0165
Best combination
of features

I3 I5 I6 I1 I2 I3 I1 I2 I3 I6

ANFIS-10 RMSE (Training) 0.2613 0.0998 0.0766 0.0462
RMSE (Testing) 0.2642 0.1012 0.0821 0.0624
Best combination
of features

I3 I5 I6 I1 I2 I3 I1 I2 I3 I6

Table 5
RMS Errors and membership function types during the optimization process.

MF-MFN MF type
description

RMS error for testing

Anflis-1 Anfis-2 Anfis-3 Anfis-4 Anfis-5

Trimf-2 Triangle
curve

0.0643 0.1879 0.0793 0.2243 0.0418
Trimf-3 0.0753 0.1410 0.0429 0.0967 0.0243
Trimf-4 0.0581 0.1125 0.0313 0.0728 0.0068
Trapmf-2 Trapezoidal

curve
0.0454 0.1750 0.0375 0.2288 0.0652

Trapmf-3 0.0522 0.1520 0.0743 0.0979 0.0279
Trapmf-4 0.0453 0.1322 0.0190 0.0839 0.0600
Gbellmf-2 Generalized

bell curve
0.0850 0.1728 0.0503 0.1316 0.0422

Gbellmf-3 0.0362 0.1309 0.0506 0.0655 0.0170
Gbellmf-4 0.0470 0.1066 0.0261 0.0621 0.0267
Gaussmf-2 Gaussian

curve
0.0909 0.1791 0.0480 0.1748 0.0295

Gaussmf-3 0.0429 0.1165 0.0447 0.0815 0.0254
Gaussmf-4 0.0453 0.1010 0.0197 0.0673 0.0169
Pimf-2 Pi-shaped

curve
0.0553 0.1779 0.0288 0.2451 0.1138

Pimf-3 0.0603 0.1798 0.0862 0.0971 0.0414
Pimf-4 0.0480 0.1966 0.0090 0.0862 0.0727
Dsigmf-2 Dsig-shaped

curve
0.0751 0.1791 0.1529 0.2202 0.1499

Dsigmf-3 0.0562 0.1583 0.1350 0.1155 0.0284
Dsigmf-4 0.0576 0.1458 0.0667 0.1054 0.0489

Anflis-6 Anfis-7 Anfis-8 Anfis-9 Anfis-10

Trimf-2 Triangle
curve

0.1018 0.0946 0.1788 0.0895 0.1304
Trimf-3 0.0617 0.0598 0.1324 0.0279 0.0684
Trimf-4 0.0917 0.0858 0.1112 0.0159 0.0758
Trapmf-2 Trapeizoidal

curve
0.1014 0.0758 0.1878 0.0752 0.0778

Trapmf-3 0.0700 0.0547 0.1434 0.0433 0.5470
Trapmf-4 0.0642 0.0215 0.1230 0.0406 0.0734
Gbellmf-2 Generalized

bell curve
0.0727 0.0807 0.1744 0.0433 0.0739

Gbellmf-3 0.0438 0.0535 0.1284 0.0281 0.0527
Gbellmf-4 0.0403 0.0344 0.1072 0.0228 0.0550
Gaussmf-2 Gaussian

curve
0.0847 0.0966 0.1944 0.0390 0.0866

Gaussmf-3 0.0442 0.0721 0.1130 0.0225 0.0509
Gaussmf-4 0.0477 0.0400 0.1014 0.0215 0.0516
Pimf-2 Pi-shaped

curve
0.1292 0.1816 0.1803 0.1352 0.0738

Pimf-3 0.0657 0.0747 0.2188 0.0508 0.1525
Pimf-4 0.0646 0.0251 0.1706 0.0455 0.0800
Dsigmf-2 Dsig-shaped

curve
0.1269 0.1728 0.1815 0.1429 0.1280

Dsigmf-3 0.0661 0.0790 0.1912 0.0915 0.1246
Dsigmf-4 0.0658 0.0536 0.1321 0.0391 0.0878

Table 6
Optimized membership function type and number.

ANFIS-NB MF-MFN RMS error for testing

ANFIS-1 Gbellmf-3 0.0362
ANFIS-2 Gaussmf-4 0.1010
ANFIS-3 Pimf-4 0.0090
ANFIS-4 Gbellmf-4 0.0621
ANFIS-5 Trimf-4 0.0068
ANFIS-6 Gbellmf-4 0.0403
ANFIS-7 Trapmf-4 0.0215
ANFIS-8 Gaussmf-4 0.1014
ANFIS-9 Trimf-4 0.0159
ANFIS-10 Gaussmf-3 0.0509
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accuracy of the proposed classifier. First, the features selection technique
is applied to choose the best combinations of features for each classifier.
Then, membership function types are optimized to choose the optimal
type of membership function for each classifier. Finally, classifiers are
trained to test our approach. Table 9 depicts the comparison results be-
tween the proposed method and ANN classifier. The obtained results
show the high accuracy of the ANFIS classifier over the ANN classifier.

Table 10 shows the comparison results between the proposed classi-
fier (ANFIS), ANN classifier and the method based on statistical property
features in fractional domain based on FRFT proposed in Ref. [2].
5.3. Results for the leapfrog filter

The obtained results when testing the leapfrog filter are shown in
Table 11. The average classification accuracy of our method is 97.52%,
whereas for the method using ANN classifier, the average classification
accuracy is 96.39%.

Therefore,we can see that the proposedmethod is better than the other
classification methods for single faults in the leapfrog filter circuit. Once
again, it is clear enough that our classifier method shows great efficiency
of diagnostic accuracies and can cope with any analog filtering circuit.

6. Conclusion

In this paper, an adaptive multiclass neuro-fuzzy classifier and
57
features reduction technique for faults classification in analog integrated
circuits is proposed. The effectiveness of the proposed method has been
validated through a Sallen-Key band pass filter, a four opamp biquad
high-pass filter and a leapfrog filter, for single parametric faults classi-
fication. Experiments for the three circuits have been performed to
evaluate the appreciation capability of the proposed classifier. Experi-
ment's results have been compared to those of both the artificial neural
network (ANN) classification method and the method using statistical
property features of transformed signals by FRFT in the optimal frac-
tional order domain, as features too. Consequently, the proposed method
has demonstrated the highest accuracy in terms of fault classification.
The average accuracy is about 99.76% and 96.74% and 97.52% for the
three CUTs mentioned above respectively. Furthermore, the use of ANFIS
classification based on features reduction technique has conducted to



Fig. 11. Artificial neuronal networks (ANN) diagram.

Table 8
Comparison of the classification accuracy between the proposed method and
other methods for the Sallen Key band pass filter.

Fault ID Classification accuracy (%)

ANFIS ANN Method [2]

F1 99.20 95.80 –

F2 99.90 99.50 –

F3 99.60 90.00 98.00
F4 100.00 96.40 100.00
F5 99.90 100.00 100.00
F6 100.00 100.00 98.57
F7 99.20 98.30 99.00
F8 100.00 95.20 100.00
F9 99.80 99.10 96.00
F10 100.00 99.90 97.00

average 99.76 97.42 98.57

Table 9
Comparison between multiclass neuro fuzzy and ANN classifiers for a four opamp
biquad high pass filter.

Fault
ID

RMS error R2 Classification accuracy (%)

ANFIS ANN ANFIS ANN ANFIS ANN

F1 0.1354 0.0715 0.7798 0.9387 99.41 99.33
F2 0.1431 0.2050 0.7542 0.4953 98.67 91.66
F3 0.2194 0.2109 0.4223 0.4662 91.58 91.33
F4 0.2072 0.2060 0.4847 0.4906 91.75 91.85
F5 0.1215 0.2886 0.9465 0.9820 99.66 91.66
F6 0.0582 0.0115 0.9592 0.9984 100.00 100.00
F7 0.1195 0.1867 0.8284 0.5817 99.91 95.25
F8 0.1281 0.0485 0.8029 0.9719 99.58 99.50
F9 0.1814 0.2145 0.6047 0.4477 96.91 90.25
F10 0.0298 0.0054 0.9893 1.0000 100.00 100.00
F11 0.2162 0.2145 0.4389 0.4478 92.33 92.25
F12 0.2089 0.2066 0.4766 0.4875 91.16 91.66

Accuracy average 96.74 94.53

Table 10
Comparison of the classification accuracy between the proposed method and
other methods for the four opamp high pass filter.

Fault ID Classification accuracy (%)

ANFIS ANN Method [2]

F1 99.66 91.66 81.00
F2 100.00 100.00 100.00
F3 99.91 95.25 89.70
F4 99.58 99.50 90.00
F5 96.91 90.25 98.00
F6 100.00 100.00 100.00
F7 92.33 92.25 89.60
F8 91.16 91.66 100.00
F9 99.41 99.33 90.00
F10 98.67 91.66 100.00
F11 91.58 91.33 100.00
F12 91.75 91.85 100.00

average 96.74 94.53 94.85

Table 11
Comparison between multiclass neuro fuzzy and ANN classifiers for the leapfrog
filter.

Fault ID RMS error R2 Classification accuracy (%)

ANFIS ANN ANFIS ANN ANFIS ANN

F1 0.0003 0.0002 1.0000 1.0000 100.00 100.00
F2 0.1488 0.1691 0.4682 0.3136 97.41 95.83
F3 0.1053 0.0908 0.7337 0.8017 99.25 97.00
F4 0.1335 0.1738 0.5721 0.2745 98.75 95.83
F5 0.0703 0.0583 0.9812 0.9182 100.00 99.08
F6 0.1552 0.1970 0.4212 0.0677 97.25 95.83
F7 0.0499 0.0658 0.9400 0.8959 100.00 99.00
F8 0.1237 0.1774 0.6324 0.2446 98.33 95.83
F9 0.0969 0.0866 0.7745 0.8197 100.00 99.08
F10 0.1839 0.1916 0.1881 0.1187 95.83 95.83
F11 0.0764 0.0615 0.8597 0.9090 99.75 99.00
F12 0.1813 0.1875 0.2104 0.1556 95.83 95.83
F13 0.1712 0.1809 0.2965 0.2146 95.66 95.83
F14 0.1015 0.0964 0.7526 0.7766 99.83 98.83
F15 0.1568 0.1813 0.4099 0.2104 96.33 95.83
F16 0.1486 0.1895 0.4697 0.1381 97.08 95.83
F17 0.1787 0.1952 0.2335 0.0847 95.83 95.83
F18 0.1784 0.1982 0.2358 0.0751 95.83 92.25
F19 0.1889 0.1981 0.1432 0.0577 95.83 95.83
F20 0.1657 0.1998 0.3405 0.0414 95.66 91.83
F21 0.1863 0.1984 0.1664 0.0549 95.75 95.66
F22 0.1653 0.1602 0.3436 0.3840 95.66 95.91
F23 0.1798 0.1982 0.2238 0.0566 95.83 95.83
F24 0.1474 0.1996 0.4782 0.0431 98.83 95.83

Accuracy average 97.52 96.39

Table 7
Comparison between multiclass neuro fuzzy and ANN classifiers for Sallen Key
band pass filter.

Fault ID RMS error R2 Classification accuracy (%)

ANFIS ANN ANFIS ANN ANFIS ANN

F1 0.1010 0.1853 0.8979 0.6566 99.20 95.80
F2 0.0362 0.0632 0.9868 0.9600 99.90 99.50
F3 0.0621 0.2667 0.9586 0.2885 99.60 90.00
F4 0.0090 0.1719 0.9991 0.7043 100.00 96.40
F5 0.0430 0.0039 0.9837 0.9998 99.90 100.00
F6 0.0068 0.0009 0.9995 1.0000 100.00 100.00
F7 0.1014 0.1162 0.8970 0.8649 99.20 98.30
F8 0.0215 0.1895 0.9953 0.6409 100.00 95.20
F9 0.0509 0.0860 0.9740 0.9260 99.80 99.10
F10 0.0159 0.0245 0.9974 0.9940 100.00 99.90

Average accuracy 99.76 97.42
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single parametric faults analog circuits' diagnosis improvement in terms
of data compression. Once again, the proposed method has achieved a
high level of efficiency of performance comparing to the aforementioned
ones. Therefore, the results encourage the use of ANFIS method to be
involved with other faults types such as double faults and catastrophic
faults. This will probably provide solutions to the analog fault diagnosis
problems and enhance the analog integrated circuits test efficiency.
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