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Abstract
Supercritical flow through open channel contractions often generates disturbances and
instabilities at the surface, which appear as transverse waves. Contraction of channel,
often called transitions, can be found in several hydraulic structures but mainly in free
surface spillway chutes. Saint Venant’s equations governing two-dimensional unsteady
free surface flows can be successfully applied to this kind of problem by making some
simplified assumptions, which in turn lead to a non-linear hyperbolic system of equa-
tions for which an analytical solution is not yet available. Thereafter, the equations of
motion obtained are generalized with cases of unspecified bottom slopes to take into
account the effect of a variable bottom slope.

In this paper, a second order two step MacCormack explicit finite differences scheme
is applied, in conjunction with a geometric transformation of the irregular physical
domain, to a simpler computational one of rectangular shape. The integration time steps
are adjusted at each incrementation time according to Courant-Friedrichs-Lewy’s stabil-
ity condition. An existing example of horizontal channel contraction is reproduced here-
in, and the obtained results of flow pattern and water surface profiles are compared to
previous experimental and numerical studies. A rectangular channel with steep slopes
will be studied as a second application in order to see if the elaborate model can simu-
late the flow in a channel with a high bottom slope. The numerical results obtained will
be compared with experimental measurements. After this a third application, in which a
supercritical flow in a recti-linear contraction of channel with variable bottom slopes, is
presented. The results obtained here will be compared with the results corresponding to
a horizontal contraction.
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1. Introduction
Water flow study represents a vast and complex research field, particularly when deal-
ing with open channels. The presence of discontinuities or obstacles in the channel sec-
tion, even if not significant, can generate large fluctuations of the free surface and varia-
tions in the liquid flow cross-sections along the current. This complexity is more critical
if the flow is unsteady and supercritical.

Channel section discontinuities, which can be contractions or expansions, are often
called transitions, and are largely used in hydraulic constructions to control the water
flow, especially in spillway chutes.

Unlike expansions, the contractions cause a jump in the water depth; they are the
siege of transverse waves also known as oblique hydraulic jump.

In order to simulate this kind of flow, the mathematical model represented by the
two-dimensional unsteady free surface equations given by Saint Venant are used. These
equations are obtained by applying the principles of conservation and mass momentum,
while making some simplified assumptions.

The system, such as it was given by Saint Venant, does not make it possible to take
into account the effect of a considerable bottom slope. Thereafter, the equations of
motion obtained were generalized for cases with unspecified bottom slopes, in order to
take into account the effect of a variable bottom slope.

The equation system obtained is of non-linear hyperbolic type for which an analytical
solution is impossible and, consequently, a numerical solution is indispensable. For this
purpose the system has been resolved using the MacCormack finite differences explicit
two-step ‘Predictor-Corrector’ scheme, which is a second order accurate in space and
time.

Knowing that the studied transition has a relatively irregular form a geometric trans-
formation is used, in which the physical domain is replaced by a rectangular computa-
tional one, which is simpler to analyze. Hence, the equations of motion are written in
transformed coordinates.

Generally, all the explicit finite differences schemes are numerically unstable. For
that, the integration time steps are adjusted at each incrementation time according to
Courant-Friedrichs-Lewy’s stability condition.

The numerical model has been used in a first application to analyze supercritical flow
in a horizontal symmetrical channel contraction. The water surface profiles along the
symmetrical axis, and along the wall of the transition, are computed. The flow pattern is
also given in this contraction. The results are compared to experimental and numerical
ones carried out by researchers.

The second application aims to establish whether or not the numerical model present-
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ed is able to simulate the two-dimensional supercritical flow in channels with a variable
bottom slope. A rectangular channel with a steep slope will be studied and the numeri-
cal results obtained will be compared with experimental measurements.

The third application is devoted to the analysis of the supercritical flow in a recti-linear
contraction of a channel with a variable bottom slope. The results obtained will be com-
pared with the results corresponding to a horizontal contraction.

2. Open channel contraction in supercritical flow
Any change of section or direction in a channel involves an irregular and undulated sur-
face of flow. The irregularities thus generated are negligible in the subcritical flows but
become significant for torrential or supercritical flows [1, 2]. These irregularities are
characterized by cross waves which are frequently present in non-prismatic channels for
flows in a supercritical regime [3].

Figure 1 shows the straight-lined contraction, including stream lines and transverse
waves where b1 and b3 are the widths in the approaching and tailwater channels, and L
is the length of the transition. In this figure, the flow pattern for any arbitrary contrac-
tion angle, �, is represented. The flow in the tailwater channel is far from being without
perturbations.

The design of contractions in a supercritical flow generates several complications con-
trary to a subcritical case. Indeed the oblique cross waves occur and can be propagated far
downstream requiring considerable heights from the walls of the channel; unless the transi-
tion is designed so as to minimize this phenomenon which can entrain much air, and a still-
ing basin located at the chute extremity might suffer from asymmetric approach flow [4, 5].

Figure 1. Schematic flow pattern in channel contraction according to Ippen & Dawson [4]
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The improvement in conditions of the flow in a symmetrical straight-lined contrac-
tion, in order to avoid the appearance of the disturbances in the tailwater channel,
depends mainly on a correct choice of the angle of contraction �. A well designed con-
traction is characterized by an almost uniform flow in the contracted channel [1, 6].

3. Literature review
Generally, supercritical flows through open channel contractions have received atten-
tion since the 1950s. The majority of the studies, whether experimental, analytical, or
numerical, are about horizontal transitions. A basic approach to the design of high-
velocity flow in horizontal contractions was reported by Ippen & Dawson [4] in a sym-
posium that probably represented the most comprehensive treatment of the topic up to
that time. This made available to the hydraulics community a unified treatment of the
mechanics of supercritical flow, and a general design method for supercritical flow in
hydraulic structures.

Later, Ippen & Harleman [7] conducted experiments to verify the hydrodynamic the-
ory of oblique hydraulic jumps. Other contributions to the chute contractions were pro-
vided by Harrison [8], Jayaraman & Sethuraman [9], Täubert [10], Sturm [3], Hager [1],
and Reinauer [2], among others. With the availability of fast computers, a more rigorous
analysis became possible. Among others, Pandolfi [11], Villegas [12], Ellis [13],
Jimenez & Chaudhry [14], and Glaister [15], carried out the computer simulation of
supercritical flow in an open channel. They used shock capturing, or method of charac-
teristics, to solve the shallow water flow equations. Thereafter, Bhallamudi & Chaudhry
[16], and Rahman & Chaudhry [17], used finite difference methods to solve unsteady,
depth-averaged, two-dimensional shallow water equations to simulate flow in open
channel transitions. In addition, Causon et al [18] used finite volume approaches for the
study of supercritical flow in a spillway channel. It should be noted that the majority of
the studies quoted above, among others, were made for horizontal transitions only. In
this work, a numerical simulation of a two-dimensional supercritical flow through a
contraction of a weak and steeply sloping channel will be undertaken, while announcing
the lack of experimental studies for the transitions with high bottom slopes.

4. Governing equations
Supercritical flows through the contraction of a channel are governed by two-dimen-
sional unsteady gradually varied flow equations. These equations, established by Saint
Venant, are obtained by applying the principles of conservation of the mass and
momentum, in addition to making some simplified assumptions [19]. The system such
as it was given by Saint Venant does not make it possible to take into account the effect
of a considerable bottom slope. Thereafter, the equations of motion obtained were gen-
eralized with the cases of the unspecified bottom slopes to take into account the effect
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of a variable bottom slope. The principal assumptions are now:

a) The fluid is incompressible.
b) The velocities distribution is uniform on a vertical. In other words, each calculated
velocity represents a mean velocity on a water column (on the vertical).
c) The vertical velocity of the flow is low.
d) The curve of the streamline of current is low.
e) The vertical acceleration of a fluid particle is very weak compared with gravitational
acceleration, g, and can thus be neglected (consequence of the assumption ‘d’).
f) The vertical pressures distribution is hydrostatic (consequence of the assumptions
‘d’ and ‘e’).
g) Bottom shear stress is large compared to other shear stress.

The equations of motion in Cartesian coordinates [20-23] are:

Continuity equation

(1)

Momentum equation in x direction

(2)

Momentum equation in y direction

(3)

where h is the flow depth, u is the depth averaged flow velocity in the x direction, v is the
depth averaged flow velocity in the y direction, t is time, g is acceleration due to gravity,
�x and �y are the incline angle of the channel bottom in x and y directions, respectively,
Sox and Soy are the channel bottom slopes in x and y directions, respectively, and Sfx and
Sfy are the friction slopes in x and y directions, respectively.

The bottom slopes are calculated as follows:

(4)

(5)
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The friction slopes are calculated as follows:

(6)

(7)

Where n is the Manning roughness coefficient, and b is the channel width.

5. Resolution of governing equations
The unsteady free surface flows are governed by a system of non-linear hyperbolic par-
tial differential equations. Such equations can be solved theoretically only in particular
cases not easily found in reality. Thus several problems in hydraulics require, for lack
of an analytical solution, a numerical solution of the partial differential equations. One
of the classic methods in approaching this solution is with the use of the finite differ-
ences method.

In the current case, the MacCormack explicit two steps ‘Predictor-Corrector’ finite
differences scheme, which is a second order equation accurate in space and time, has
been chosen [24-27].

5.1. MacCormack scheme
Several methods investigated by Lax & Wendroff [28] have become popular for solving
hyperbolic systems. These methods, known as two-step schemes, are based on second-
order Taylor series expansions in time. An interesting and simpler variation of the Lax-
Wendroff scheme was introduced by MacCormack [24], and has been widely used in
computational fluid dynamics.

5.2. General formulation
This scheme consists of a two-step ‘Predictor-Corrector’ sequence. Flow variables are
known at k time level, and their values are to be determined at k +1 time level.

In order to illustrate the principal steps of the MacCormack scheme, the governing
equations in terms of the flow variables U = (h, uh, vh)t are written in the Cartesian
coordinates, and in the following conservative form:

(8a)

in which
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(8b)

Then, for grid points i and j, the following finite difference equation may be written
for Equation 8a and Equation 8b:

Predictor step

(9)

Corrector step

(10)

where �x = �t / �x, and �y = �t / �y.
and are the intermediate values for U. The new values of U are then obtained

from:

(11)

The grid points are defined by subscripts i, j and k. The scheme first uses forward
space differences to predict an intermediate solution from known information at the k
time level. Backward space differences are then used in the second step to correct the
predicted values. The solution at the unknown time level is calculated by using the
results obtained in the predictor and the corrector steps. Hence it is possible to use back-
ward finite differences in the predictor part, and forward finite differences in the correc-
tor part.
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6. Coordinate transformation
In order to solve the equations of motion (1-3) by finite differences techniques, it is
compulsory to simplify the boundaries of the transition. For that, the physical domain is
transformed to a rectangular computational one by the following coordinate’s transfor-
mation:

(12)

(13)

where, b(x) is the distance between the symmetry line and the upper boundary at distance x.
To apply the finite differences method on the computational plane, the governing equa-

tions are transformed into the following conservation form in terms of � and � [16, 22]:

Continuity equation

(14)

Momentum equation in � direction

(15)

Momentum equation in � direction

(16)

where

(17)
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7. Stability condition
Finite difference techniques are commonly employed in solving numerically partial dif-
ferential equations. The solutions obtained from explicit finite difference schemes are
conditionally stable where the stability condition is given by the Courant-Friedrichs-
Lewy (CFL) restriction. For two-dimensional flows, this condition is given by the fol-
lowing equation [16, 25, 27]:

(18)

where V is the resultant velocity at the grid point, Cn is the Courant number, �� and ��
are the distance increment in � axis and � axis, respectively, and �t is the time interval.
For the MacCormack schemes, the value of the Courant number must be inferior or
equal to one (Cn ≤ 1).

A characteristic feature of the explicit schemes is the choice of time level, which is
governed by the stability criteria. The magnitude of time step is given by the CFL sta-
bility condition.

8. Application

8.1. Symmetrical channel contraction with small bottom slope
In this application a supercritical free surface flow through a symmetrical channel is ana-
lyzed (Figure 2). This case has been studied in experiments by Coles & Shintaku [16],
and numerically by Bhallamudi & Chaudhry [16].

Figure 2. Symmetrical recti-linear contraction
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The principal data of this application are:

(a) The upstream width of the contraction is b1 = 0.61m
(b) The downstream width of the contraction is b3 = 0.305m
(c) The length of the transition is L = 1.45m
(d) The upstream boundary conditions of the transition are:

- The upstream Froude number is Fo = 4
- The upstream depth is ho = 0.0305m
- The longitudinal upstream velocity is uo = 2.188m/sec
- The transversal upstream velocity is vo = 0m/sec

(e) The bottom and the friction slopes are supposed to be negligible (equal to zero)
(f) The Courant number is Cn = 0.8
(g) The grid used is �� = 0.0483m, and �� = 0.0476m

The water surface profiles along the centerline, and along the wall, are respectively
given in Figure 3 and Figure 4.

Figure 3. Water surface profile along the centerline in the channel contraction
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From these figures it is noticed that the results obtained by using a discretization with
the MacCormack explicit finite differences scheme agree well with the numerical results
obtained by Bhallamudi & Chaudhry [16].

By comparing these results with the experimental measurements, it can be noted that
they are rather good along the solid side wall of the transition and relatively less good
along the symmetrical axis where there is a shift between the peak of the calculated
water surface profile and the peak observed in experiments. This difference is primarily
due to the violation of the assumption of hydrostatic pressure distribution near step gradi-
ents. Hydrostatic pressure distribution is valid at all points except in the vicinity of a
shock, such as a hydraulic jump and oblique hydraulic jump. In order to obtain good
results it is necessary to include the Boussinesq terms to account for non-hydrostatic
pressure distribution due to the acceleration effects.

On the other hand, crossing of the waves near the centerline results in air entrainment.
The effect of air entrainment is not included in the present model.

The model gives results which can confidently be used for selecting the wall height of
recti-linear channel contraction.

Figure 5 shows a plane representation of the flow in the symmetrical recti-linear con-
traction, where the formed pattern of cross waves can be observed in a clearer way,
which leads to agitations and perturbations in the downstream rectangular channel.
Therefore, this type of configuration must be avoided. It can be said that the results
obtained here (Figure 5) conform to the observation made by Ippen & Dawson [4]
(Figure 1).

Figure 4. Water surface profile along the wall in the channel contraction
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8.2. Rectangular channel with high bottom slope
The objective of the second application is to test the validity of the elaborate numerical
model to simulate the unsteady torrential flows in steeply sloping channels. For that a
rectangular channel of spillway chutes in a reduced model has been chosen [22, 29] ,
which has a bottom slope of approximately 28°. The flow conditions in this channel are
summarized as follows:

The following data are also used:

(a) The channel width is 0.41m
(b) The length of channel is 0.74m
(c) The grid used is �� = 0.0211m, and ��� = 0.01m
(d) The Courant number is Cn = 0.5
(e) The Manning number is n = 0.01
(f) The bottom slope is � = 28.1245°

Flow conditions in the rectangular channel

Discharge (m3/sec) 0.0689 0.093

The upstream flow depth (m) 0.1000 0.1300

The longitudinal upstream velocity (m/sec) 1.6805 1.7450

The transversal upstream velocity (m/sec) 0 0

Figure 5. Curves of equal heights in symmetrical channel contraction
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Figure 6 and Figure 7 provide the water surface profiles along the side wall of the pris-
matic channel for a discharge of 0.0689m3/sec (real discharge = 2000m3/sec), and an
exceptional discharge of 0.093m3/sec (real discharge = 2700m3/sec).

Figure 6. Water surface profile along the wall in the rectangular channel for a discharge of

0.0689m3/sec

Figure 7. Water surface profile along the wall in the rectangular channel for a discharge of

0.093m3/sec
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By comparing the results obtained numerically with the experimental results, a rather
good agreement is noticed. So it can be concluded that the elaborate numerical model is
ready to simulate the torrential flows in channels with a high bottom slope.

8.3. Contraction of a channel with a variable bottom slope
In the third application the symmetrical recti-linear contraction given by Figure 2,
which was studied in the first application with a null slope, will be taken again here by
keeping the same dimensions and same conditions of flow. In the present case a torren-
tial flow through this contraction will be studied, and the bottom slope is accentuated
considerably in order to see how the water surface compares with the profile obtained
for a horizontal transition. The study is made for slopes of 15°, 25° and 40°. It was
selected to compare water surface profiles for the various slopes chosen, with the case
of a horizontal transition studied in the first application, considering the lack of applica-
tion containing from experimental measurements.

The profiles of the water surface along the symmetrical axis calculated for the three
slopes is shown in Figure 8.

The following observations can be made:

• The increase in the bottom slope will cause a lowering of the free surface compared to

Figure 8. Effect of the increase in the bottom slope on the water surface in a symmetrical

recti-linear contraction (symmetrical axis)
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the case of the horizontal channel.
• The profiles of the water surface obtained for the three slopes present only one height-
ening contrary to the case of the horizontal transition.
• The heightening of the free surface for the slopes of 15°, 25° and 40° does not exceed
the first heightening observed in the horizontal channel contraction.
• The more the bottom slope is increased, the more the system of shock waves moves
far downstream.

Therefore the increase in the bottom slope in a symmetrical recti-linear contraction,
crossed by a supercritical flow, mainly generates an increased rate of flow in the direc-
tion of the flow. This considerable speed involves the system of transverse waves more
and more downstream, and prevents the formation of the great tops of waves which is
observed in the horizontal or slightly sloping contractions.

In addition, Figure 9 gives the water surface profiles in the solid side wall for the var-
ious studied slopes.

From this figure the following points can be observed:

• No significant heightening of the water surface is observed for the three studied slopes,
compared to the results slope equal to zero.

Figure 9. Effect of the increase in the bottom slope on the water surface in a symmetrical

recti-linear contraction (solid side wall)
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• The surface profiles for the slopes of 15°, 25° and 40° keep an almost constant height in
the transition.
• On the other hand, just at the end of the contraction (at the entry of the channel down-
stream), the depth of the flow falls quickly.
• The increase in the bottom slope thus involves a reduction in the water surface profiles
along the solid side wall.

It is noted here that the section “x/ho = 47.75” is with a length “X = 1.45m”, corre-
sponding to the length of the contraction (i.e. just with the entry of the downstream rec-
tangular channel), and there is an abrupt lowering of the water surface for the three
slopes taken into account in this study. This is primarily due to the fact that the velocity
of flow increased with the increase of the bottom slope, which leads to the concentration
of water flow along the axis of symmetry, not along the wall of the downstream rectan-
gular channel and, consequently, it does not have here the birth of waves along the wall.

9. Conclusion
The interest granted to the supercritical flows in open channels, through various research
works raised in the literature specialized in this field, indicates the importance of this sub-
ject. An analysis of supercritical flows crossing non-prismatic open channels is presented.
This type of flow is complex since it always generates irregular and ondular free surfaces.
A mathematical model which allows the simulation of this phenomenon has been given.
Resolving these equations can be made by using the MacCormack explicit two-step
“Predictor-Corrector” finite differences scheme. The calculation of the water surface pro-
files in symmetrical channel contraction gives satisfactory results with the MacCormack
numerical scheme along the side wall, and relatively less good results along the symmetri-
cal axis of the channel where the assumption of a hydrostatic pressure distribution is not
valid. Hydrostatic pressure distribution is valid at all points except in the vicinity of a
shock. Although some details are lost in the vicinity of the shock, if the shallow water
equations are used, the overall results are adequate for engineering purposes.

Based on experimental results, Ippen & Harleman [7] have shown that the error intro-
duced by the assumption of uniform velocity distribution is negligible. In addition, it is
shown that the steady state of the flow in this study is reached at approximately 1.51 sec-
onds, which is a great advantage compared to the results obtained by Bhallamudi &
Chaudhry [16], where the steady state is reached at approximately three seconds by using
the same scheme. Thus it can be concluded that the MacCormack scheme is apt to simu-
late the supercritical flows in symmetrical recti-linear channel contractions with the pres-
ence of shocks, and the obtained results can be used with confidence in the dimensioning
of such hydraulic structures, especially for selecting the wall height.

The aptitude of the numerical model presented to simulate the supercritical flows in
steeply sloping channels was checked by treating the flow through a channel with a rec-
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tangular cross-section (a reduced model of rectangular spillway chutes) with a bottom
slope of approximately 28°. The profiles of the water surface obtained are very close to
the experimental measurements taken at the laboratory.

Thereafter the study was extended to the case of steeply sloping channel contractions,
where symmetrical contractions with variable bottom slopes were analyzed. A reduction
in depth and an increased speed are the principal consequences generated by the passage
of a supercritical flow through the studied transition. The considerable increase in speed
further involves the system of transverse waves with the downstream, and prevents the
formation of great tops of waves, which always exist in the horizontal transitions.

Finally, one can say that the numerical model presented makes it possible to simulate
the supercritical flows through prismatic or non-prismatic channels with small or high
bottom slopes.

Notations
The following symbols are used in this paper:

b1 = Upstream width
b3 = Downstream width
Cn = Courant number
g = Acceleration due to gravity
Fo = Upstream Froude number
h = Flow depth
ho = Upstream height
L = Length of contraction
n = Manning roughness coefficient
Sfx = Friction slopes in x direction
Sfy = Friction slopes in y direction
Sox = Bottom slope in x direction
Soy = Bottom slope in y direction
t = Time
U = Depth averaged flow velocity in x direction
uo = Longitudinal upstream velocity
V = Resultant velocity
v = Depth averaged flow velocity in y direction
vo = Transversal upstream velocity
x = Longitudinal spatial coordinate
y = Transversal spatial coordinate
�x = Incline angle of the channel bottom in x direction
�y = Incline angle of the channel bottom in y direction
� = Shock angle
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� = Transformed space coordinates
� = Transformed space coordinates
� = Contraction angle
�t = Time interval
�� = Distance increment in � direction
�� = Distance increment in � direction
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