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A B S T R A C T

Earth Observation (EO) allows deriving from a range of sensors, often globally, operational estimates of surface
soil moisture (SSM) at range of spatiotemporal resolutions. Yet, an evaluation of the accuracy of those products
in a variety of environmental conditions has been often limited. In this study, the accuracy of the SMOS SSM
global operational product across 2 continents (USA, and Europe) and a range of land use/cover types is in-
vestigated. SMOS predictions were compared against near concurrent in-situ SSM measurements from the
FLUXNET observational network. In total, 7 experimental sites were used to assess the accuracy of SMOS derived
soil moisture for 2 complete years of observations (2010–2011). The accuracy of the SMOS SSM product is
investigated in different seasons for the seasonal cycle as well as different continents and land use/cover types.
Results showed a generally reasonable agreement between the SMOS product and the in-situ soil moisture
measurements in the 0–5 cm soil moisture layer. Root Mean Square Error (RMSE) in most cases was close to 0.1
m3 m−3 (minimum 0.067m3 m−3). With a few exceptions, Pearson’s correlation coefficient was found up to
approx. 55%. Grassland, shrublands and woody savanna land cover types attained a satisfactory agreement
between satellite derived and in-situ measurements but needleleaf forests had lower correlation. Better agree-
ment was found for the grassland sites in both continents. Seasonally, summer and autumn underperformed
spring and winter. Our study results provide supportive evidence of the potential value of this operational
product for meso-scale studies in a range of practical applications, helping to address key challenges present
nowadays linked to food and water security.

1. Introduction

Soil moisture corresponds to water in both the uppermost layer of
the land surface – called Surface Soil Moisture (SSM) – and the root
zone or vadose area. This parameter is strongly affected by many factors
such as soil texture, organic materials, and topography as well as land
use/land cover and rainfall (Srivastava et al., 2016a; Raffelli et al.,
2017) Soil moisture, particularly SSM plays a significant role in the
distribution of the mass and energy fluxes between the land and the
atmosphere, and it controls the different components of the water and

energy balance (Seneviratne et al., 2010; Bao et al., 2018). Further-
more, it is a key state variable in organizing the natural ecosystems and
biodiversity (Vereecken et al., 2008; Carlson and Petropoulos, (in
press)), also important to modeling extreme events such as flooding or
landslides prediction (Bittelli et al., 2012; Wanders et al., 2014),
drought monitoring (Sánchez-Ruiz et al., 2014), and numerical weather
prediction (De Rosnay et al., 2013). Considering many aspects in life
such as food security and water resources management, it is essential
for agriculture and irrigation management practices. Particularly, in
developing irrigation management practices for more crop production
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and optimum use of water resources especially in arid and semi-arid
regions (Rotzer et al., 2012; Canone et al., 2015; Brocca et al., 2017a;
Canone et al., 2017). Thus, large scale SSM accuracy evaluation spa-
tially and temporally represents an important topic to be investigated.

SSM point based measurements at particular locations fail to ef-
fectively capture this variability. There are different approaches used
for soil moisture measurements (a recent review can be found in
Petropoulos et al., 2015a), including the establishment of relevant op-
erational networks (Petropoulos and McCalmont, 2017). In-situ tech-
niques, such as the gravimetric Time Domain Reflectometry (TDR) and
the Frequency Domain Reflectometry (FDR) (Brocca et al., 2017a,b)
provide accurately SSM. However, they are of too sparse spatial cov-
erage to characterize the spatiotemporal features of soil moisture at
large-scale (Crow et al., 2012; Pierdicca et al., 2012). Newly developed
techniques such as cosmic ray and GPS moderately address this issue
(Dorigo et al., 2013).

Earth Observation (EO) provides promising methods to survey SSM
at large scale at satisfactory spatiotemporal resolution (Srivastava et al.,
2016b; Petropoulos et al., 2018a). In the past two decades immense
progress has been achieved on developing soil moisture products by
using EO from microwave, optical and thermal satellite sensors (for a
review see e.g. (Petropoulos et al., 2018b). Several microwave instru-
ments were launched for developing SSM global products from active/
passive microwave signals. Currently, L-band microwave sensors are
considered the most promising for SSM estimation. The Soil Moisture
Ocean Salinity (SMOS) mission of European Space Agency (ESA) carries
the first operational L-band radiometer to measure SSM at spatial re-
solution of ˜40 km (Kerr et al., 2012; Djamai et al., 2015). Currently, the
satellite Scatterometers of the European Remote Sensing (ERS-1/2) and
the Advanced Scatterometer (ASCAT) onboard of the Meteorological
Operational satellite program Metop-A and Metop-B (2007–2014)
provide soil moisture retrievals at global scale.

In order to obtain long term soil moisture estimation at global scale,

passive and active microwave soil moisture products have been used in
combination. For example, a method to derive soil moisture from
SMAP/Sentinel-1 data such as SMAP L-band brightness temperatures
and Copernicus Sentinel-1 C-band backscatter coefficients has been
developed. Likewise, there are efforts to merge the passive and active
soil moisture products under the European Space Agency Climate
Change Initiative soil moisture product (CCI SM), in an attempt to
generate a long term global scale soil moisture record (Liu et al., 2011;
Draper et al., 2012) The Water Cycle Observation Mission (WCOM)
satellite is being developed by the Chinese Academy of Sciences to
combine the passive and active microwave sensors and is expected to be
launched in 2020 (Shi et al., 2014).

Due to its lower sensitivity to surface roughness and vegetation
cover, the L-band is more appropriate for assessing soil moisture con-
ditions (Calvet et al., 2011). This makes it the most suitable microwave
band for soil moisture measurement from space. In the recent years, the
product has been evaluated by various studies in several geographical
regions around the globe like USA (Zhuo et al., 2015), Argentina
(Grings et al., 2015), Europe (Ro¨tzer et al., 2014; González-Zamora
et al., 2015), China (Cui et al., 2017), India (Chakravorty et al., 2016)
and West-Africa (Louvet et al., 2015).

Despite the major importance of soil moisture and measuring it ef-
fectively in global scale, a systematic presentation of the accuracy of the
MIRAS instrument of SMOS has been examined so far by very few
studies (Petropoulos et al., 2014; Fascetti et al., 2014; Petropoulos
et al., 2015b; Djamai et al., 2015; Liu et al., 2018; Chen et al., 2018).
The motivation of our study was to investigate the accuracy of soil
moisture measurements by SMOS in the Northern hemisphere. SMOS
SSM is acquired by using remote sensing through indirect measurement
techniques. There are many factors influencing their retrievals (e.g.
radio interference, vegetation cover, soil roughness, etc. (see for ex-
ample Petropoulos et al., 2014). Therefore, comprehensive evaluation
of those operational products through all the seasons on different

Table 1
Comparison between Satellite (SMOS) and observed SSM at the validation sites in EU based on land cover type, for 2010 and 2011 as well as all sites (both years).
AGU represents Shrublands, LJU represents Olive Orchards and MAU represents Croplands. Units are in m3/m3.

Measure AGU 2010 AGU 2011 LJU 2010 LJU 2011 MAU 2011 All Sites

ME (bias) 0.037 0.063 −0.040 −0.046 −0.080 −0.024
MAE 0.074 0.085 0.054 0.079 0.087 0.079
RMSE 0.092 0.116 0.067 0.099 0.110 0.101
R 0.537 0.303 0.683 0.428 0.673 0.446
Rs 0.447 0.404 0.479 0.397 0.675 0.433
Scatter 0.085 0.099 0.054 0.089 0.075 0.099
Slope 0.566 0.431 0.595 0.478 0.587 0.391
Intercept 0.088 0.135 0.030 0.061 0.019 0.088
N 74 56 46 61 130 367

Fig. 1. Agreement between in-situ and pre-
dicted SSM from SMOS for the different land
cover types in EUROPE. Results are shown for:
a) 2010: ES_AGU (red) and ES_LJU (blue). b)
2011: ES_AGU (red), ES_LJU (blue), FR_MAU
(green) (For interpretation of the references to
colour in this figure legend, the reader is re-
ferred to the web version of this article).
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vegetation cover types is highly required, so that the data provider and
the user can clearly understand the uncertainties associated with the
data and assist in further algorithm development (Srivastava et al.,
2014).

Although a number of studies have been focused on evaluation of
SMOS, studies available on assessment of products over the Northern
hemisphere are to our knowledge scarce. In this context, this study
explores SMOS soil moisture product accuracy in different seasons and
variety of land cover types at selected sites belonging to the FLUXNET
global in-situ measurements network to investigate the different factors
that might influence the accuracy of the soil moisture product estima-
tions. A better understanding of MIRAS SSM data can lead to rapid
developments in important areas of the economy, such as agriculture,

monitoring plant growth as well as food and water security.

2. Data description

2.1. In-situ measurements

FLUXNET (http://fluxnet.ornl.gov/obtain-data) is the largest global
network of micrometeorological fluxes and ancillary parameters
(Baldocchi et al., 1995) in the regional and global scale. SSM is mea-
sured at 30-min intervals using standardized instrumentation across
sites. After data are collected standard procedures for error corrections,
gap-filling and quality control take place to make sure the data are
consistent for all sites and datasets. Erroneous data measurements with

Fig. 2. Agreement between in-situ and predicted SSM from SMOS for all the different land cover types in Europe. Results are shown for: i- 2010: a) ES_AGU and b)
ES_LJU ii- 2011: a) ES_AGU b) ES_LJU c) FR_MAU (green) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article).

Fig. 3. Agreement between in-situ (red) and predicted SSM (blue) from SMOS for the different land cover types throughout 2010 in EUROPE. Results are shown for:
(a) ES_AGU and (b) ES_LJU. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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obvious instrument errors are removed from the in-situ data.
In this study, in-situ data for the years 2010 and 2011 were acquired

from seven sites. Three of those sites were situated in Europe (AGU,
LJU, and MAU) and four were in the United States (ME2, VAR, TON,
WHS). Only sites with continuous long term datasets, at surfaces top
5 cm depth were selected. Another factor during the selection of sites
was homogeneity in the land cover type. To avoid any mixed pixel ef-
fects on the overall performance, satellite pixels are chosen over the
FLUXNET towers having the largest homogenous land cover.

The 7 sites selected in this study are: ES Agu, US-WHS & ES-LJu
—open shrubland, US-Me2—Evergreen Needle-Leaf Forest, US-Var
—grasslands, FR-MAU —croplands. For FR-MAU, only data from 2011
were available. All in-situ data were obtained from the FLUXNET
website and where possible, verified by the site manager above.

2.2. SMOS soil moisture product

The SMOS mission is a part of European Space Agency. It is the first
L-band microwave satellite devoted to provide global measurements of
soil moisture over land and ocean salinity by observing natural mi-
crowave emissions from the earth surface. The SMOS satellite was
launched in November 2009, its orbit is 763 km which is approximately
circular with a 6 a.m. (ascending) and 6 p.m. (descending) equatorial
local crossing time and still works surpassing 5 year its proposed service
period.

The interferometric radiometer onboard of SMOS satellite operates
in the L-band microwave. The SMOS platform main instrument is
Microwave Imaging Radiometer with Aperture Synthesis (MIRAS), a
dual polarized 2-D interferometer that records emitted energy from
earth surface in microwave L-band (1.4 GHz). It is aimed to provide
near-surface soil moisture estimations with global coverage, a three
days revisit time at the equator and approximately daily at the pole,
spatial resolution of around 40 km (Kerr et al., 2001). The SMOS SSM
products are defined on the Icosahedral Snyder Equal Area projection
(ISEA 4H9 grid) with aperture 4, resolution 9. The shape of cells is a
hexagon (Srivastava et al., 2016a). Its mission expected accuracy of 4%
which expected to be achievable over relatively uniform area (Panciera
et al., 2011). The soil moisture retrievals evaluated in this study are the
SMOS products version (v05) image granules which were acquired from
Eoli-SA portal covering the full years of 2011 and 2012.

3. Methods

In-situ measurements recorded in FLUXNET at the time closer of
SMOS overpass were selected for the comparisons performed in this
study. After quality assessment, the data values were extracted (Excel
Macro VBA) and assigned to point shapefiles of the study site (Tabular
join in ArcMap 10.2). The shapefiles were imported on top of the pre-
processed SMOS image pixels in the BEAM VISAT and SMOS toolbox.
These pixels were further analyzed using Microsoft Excel and Matlab

Fig. 4. Agreement between in-situ (red) and predicted SSM (blue) from SMOS for the different land cover types throughout 2011 in EUROPE. Results are shown for:
(a) ES_AGU and (b) ES_LJU and (c) FR_MAU (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article).

Table 2
Comparison per season between Satellite (SMOS) and observed SSM at all validation sites in EU for 2010 and 2011. Units are in m3/m3.

Measure Autumn 2010 Winter 2010 Spring 2010 Summer 2010 Autumn 2011 Winter 2011 Spring 2011 Summer 2011

ME (bias) 0.039 −0.051 −0.030 0.031 −0.014 −0.087 −0.063 −0.010
MAE 0.061 0.101 0.067 0.053 0.075 0.099 0.110 0.064
RMSE 0.078 0.116 0.077 0.071 0.093 0.119 0.139 0.089
R 0.305 0.234 0.559 −0.110 0.338 0.432 0.218 0.365
Rs 0.282 0.144 0.649 0.021 0.293 0.404 0.277 0.298
Scatter 0.068 0.107 0.073 0.065 0.093 0.081 0.126 0.089
Slope 0.452 0.443 0.626 −0.185 0.334 0.531 0.236 0.372
Intercept 0.093 0.100 0.037 0.128 0.095 0.053 0.115 0.089
N 44 19 26 31 79 55 50 63
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2016a. Comparisons of the in-situ soil moisture (0–5 cm) and the sa-
tellite soil moisture retrievals were performed and are presented in the
results below. Evaluation was performed on point by point comparison
of the in-situ and satellite products. The statistical performance mea-
sures used were: The Root Mean Square Error (RMSE), Pearson’s
Correlation coefficient (R) including slope and intercept, Spearman’s
rank correlation coefficient (Rs), the Mean Error (Bias), and the stan-
dard deviation (Scatter). Those statistical measures have been used in
other previous studies (e.g. (Petropoulos et al., 2013; Deng et al., 2019).
The analysis was carried out on different land cover types and agree-
ment was evaluated for 7 sites. Similarly, agreement was also evaluated

for the 4 seasons, spring (March- May), summer (June–August), autumn
(September–November) and winter (December–February), direct point-
by-point comparisons were performed at every in-situ station to eval-
uate the statistical agreement for each threshold. Analysis was per-
formed for each scenario independently for both 2010 and 2011.

Fig. 5. Agreement between in-situ and predicted SSM from SMOS for the different seasons for all sites together shown here for year EUROPE. In particular, for (a)
Autumn, (b) Winter, (c) Spring, (d) for 2011.

Table 3
Comparison between Satellite (SMOS) and observed SSM at the validation sites in USA based on land cover type, for 2010 and 2011 as well as all sites (both years).
ME2 stands for Evergreen Needle-leaf Forest, TON represents Woody Savannahs, VAR stands for Grasslands and WHS represents Open Shrublands. Units are in m3/
m3.

Measure ME2 2010 ME2 2011 TON 2010 TON 2011 VAR 2010 VAR 2011 WHS 2010 WHS 2011 All Sites

ME (bias) −0.045 −0.025 −0.033 −0.016 0.047 0.073 0.074 0.082 0.014
MAE 0.089 0.033 0.054 0.055 0.051 0.077 0.075 0.082 0.062
RMSE 0.117 0.040 0.075 0.068 0.065 0.093 0.086 0.092 0.080
R 0.116 0.759 0.890 0.875 0.947 0.842 0.616 0.682 0.803
Rs 0.232 0.276 0.840 0.849 0.913 0.845 0.528 0.629 0.736
Scatter 0.110 0.031 0.068 0.067 0.046 0.059 0.045 0.042 0.079
Slope 0.176 2.036 0.768 0.758 1.238 1.406 1.014 1.436 0.789
Intercept 0.079 −0.116 0.024 0.046 0.008 −0.022 0.073 0.068 0.050
N 31 29 61 46 58 28 31 29 313
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4. Results

4.1. Europe

4.1.1. Different land covers performance comparisons
The first study area is Europe, with three stations. The land cover

type mainly covered by AGU represents Shrublands, LJU represents
olive orchards and MAU represents croplands. AGU and LJU are used
for the evaluations in 2010, and AGU, LJU and MAU are used for the
year 2011.

Table 1, Figs. 1–5 show the evaluation results of SMOS SSM product
in Europe for the years 2010 and 2011. In addition, considering that the
scatter plot at a given significance level can effectively show the general
trends of the correlation R between the SMOS predicted SSM with the
in-situ measurements and outliers of an array, 95% confidence levels
was used to intuitively reflect and compare the parameter values shown
in Fig. 2. Generally, as indicated from the statistical metrics calculated
for the case of the comparisons for all sites, a relatively satisfactory
agreement between the two compared datasets was reported
(RMSE=0.101 m3/m3, bias = -0.024m3/ m3, scatter= 0.099 m3/m3

and R=0.446).
Further analysis was conducted to evaluate the product perfor-

mance over the different land cover types. As can be seen from Table 1,
Figs. 1 and 2, the correlation coefficient varied from 0.537−0.683 in
2010 over AGU& LJU to 0.303, 0.428 & 0.673 in 2011 over AGU, LJU
and MAU respectively. Notably, for AGU and MAU in the 2011 the
RMSE is larger than 0.1 m3m−3 due to the presence of bias whereas the
correlation obtained for AGU was low (R=0.303). On both land covers
AGU (Shrubland) and LJU (Olive), SSM product shows a good estima-
tion against the in-situ measurements for the year 2010 (Fig. 1a). The
SSM product estimation showed lower performance against the in-situ
measurements for the year 2011 (Fig. 1b). When the results are com-
bined for all sites for both years, there is indication of bias (−0.024)
leading to an underestimation of the predicted SSM. In addition, per-
formance for all sites was better in 2010 than 2011 with overall lower
RMSE for 2010 than 2011. Similar findings were reported also for the
Scatter. In general, SMOS product behaved similarly in the different
land cover types. The SMOS products for LJU (2010) had the best fitting
trend with a high R (Fig. 2b).

4.1.2. Temporal variability
To explore the temporal trends between in-situ and SMOS product

for different seasons during 2010 and 2011, the in-situ measurements
(red) and the predicted SSM (blue) over AGU, LJU in 2010, AGU, LJU
and MAU in 2011 are investigated by month, when possible by the data,
as shown in Fig. 3. The 95% confidence intervals are shown as green

dashed lines in Figs. 3 and 4. Due to discontinuous data and small
number of data per month, the confidence margins are wide and there
are gaps in the data. Thus, it is not always possible to have results for
overestimation or underestimation in a given month with statistical
certainty.

In 2010, as shown in Fig. 3, the SMOS product overestimated the in-
situ observations from September to November over AGU (Fig. 3a) with
statistical significance. In 2011, SMOS product aligns with AGU within
the 95% confidence level, except for October and November although
data for the previous months are scarce. Looking at the entirety of AGU
though, SMOS tends to overestimate the SSM. The time series for LJU in
2011 show a greater lack of data and cannot lead to conclusions about
overestimation or underestimation. For Croplands (MAU site, Fig. 4c)
the data is continuous. SMOS underestimates the SSM for this site
especially from January to April.

Table 2 summarizes the comparisons between autumn, winter,
spring and summer in 2010 and 2011. Figs. 3–5 show the agreement
between predicted and observed soil moisture for the different seasons
separately for 2010, 2011. Generally, all seasons displayed adequate
RMSE (between 0.071 and 0.139) but a low correlation coefficient. No
clear patterns that can be seen between the seasons in 2010 and 2011.
The correlation (R 0.22) in spring 2011, could be associated with the
negative bias and the smaller size in comparison to the other seasons in
2010 and 2011.

4.2. USA

4.2.1. Comparisons for different land use/cover types
A total of four stations were included in the USA. The characteristic

land surface cover types in this area are as follows: ME2 stands for
Evergreen Needle-leaf Forest (ENF), TON represents Woody Savannahs
(WSA), VAR stands for Grasslands (GRA) and WHS represents Open
Shrublands (OSH). Table 3 and Figs. 6–9 show the comparison statistics
between SMOS product and the in-situ measurements over different
land cover types. The correlation coefficient of the predicted and the
observed measurements is included in the scatterplots (Fig. 6).

Overall, as indicated from the statistical metrics computed for the
analysis of the combination of all sites, a very good agreement between
the two datasets was indicated (RMSE=0.080 m3/m3, bias= 0.014
m3/ m3, scatter= 0.079 m3/m3 and R=0.80). In the case of the dif-
ferent Land cover comparison, SMOS product had negative bias over
ME2 (ENF) and TON (WSA), while the positive bias over VAR (GRA)
and WHS (OSH) for both 2010 and 2011. In term of correlation coef-
ficient, SMOS product performance was good for all sites except ME2
(ENF) which has minimum correlation coefficient for RME2

_2010= 0.116 reflected by the RMSE=0.117, in contrast to the high

Fig. 6. Agreement between in-situ and predicted SSM from SMOS for all the different land cover types in USA. Results are shown for US_ME2 (black), US_TON (red),
US_VAR (green) and US_WHS (blue): a) 2010 b) 2011.
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performance in 2011 for the same site (RME2_2011 =0.759,
RMSE=0.040). In addition, SMOS product shows maximum scatter (or
standard deviation) on ME22010 (Scatter= 0.110), while the scattering
is minimum in ME22011 (Scatter= 0.031). Moreover, the product has
shown small RMSE values (all between 0.040 and 0.117), illustrating
preferable correlation to the in-situ measurements. In addition, the
SMOS products for TON, VAR and WHS showed good data quality in
terms of accuracy, stability, and correlation coefficient over the dif-
ferent land cover types in USA, as seen in the scatter plots of Fig. 7. In
contrast SMOS product over Evergreen Needle-forest ME2 could not
effectively coincide with the in-situ measurements (Fig. 7: (i)-a and (ii)-
a) displaying either very high or very low slope and high intercept.

4.2.2. Temporal variability
Fig. 8 shows the temporal fitting trend between the in-situ mea-

surements (red) and the predicted SSM (blue) over TON (Woody Sa-
vannahs), VAR (Grasslands) and WHS (Open Shrublands). For ME2 in
2010 and for all sites in 2011, the data were discontinuous with large
gaps so the temporal fitting was not included. Even for the remaining
sites, in some cases there was a small number of data per month leading
to wide confidence margins. Thus, it is not always possible to have
results for overestimation or underestimation in a given month with
statistical certainty.

SMOS SSM estimations for TON (Woody Savannahs) is in good
agreement with in-situ SSM from May to December with statistically
significant underestimation for March and April. For VAR (Grasslands,
Fig. 8b) and WHS (Shrublands, Fig. 8c), a slight (and not always sta-
tistically significant) overestimation of the SSM by SMOS can be wit-
nessed throughout the year.

Table 4 summarizes the comparisons between the seasons and Fig. 9
shows the agreement between SSM SMOS and the in-situ measurements
for the different seasons separately for 2010 and 2011. In general, the
SSM SMOS product has shown low RMSE in all the seasons as shown in
Table 4 and Fig. 9. However, the correlation coefficient R was inferior
in autumn 2011 and for both summers and generally good in the other
seasons in both years. RMSE has the highest values in winter in both
years. Spring of 2011 has the highest Pearson’s coefficient from all sites
investigated in all continents and the lowest bias 0.012m3/m3.

5. Discussion

In this study, SSM SMOS operational product is evaluated using in-
situ measurements in two continental regions based on different land
cover types. Three in-situ networks in Europe that included: AGU
(Shrublands), LJU (olive orchards) and MAU (croplands). In USA four
in-situ networks were used namely: ME2 (Evergreen Needle-leaf
Forest), TON (Woody Savannahs), VAR (Grasslands) and WHS (Open
Shrublands). The performance was evaluated using metrics defined in
previous work (Petropoulos et al., 2013). Results are shown in section
4. In this section, an extended discussion is conducted on SMOS SSM
product overall performance on different land cover types in order to
further improve the algorithm.

To summarize, SMOS SSM product is generally applicable in all the
selected areas. As shown in Tables 1–4, several errors metrics e.g.
RMSE, Bias, Scatter, and R showed satisfactory accuracy over selected
sites in Europe and USA. In Europe, SMOS SSM has shown reasonable R
values, except over the Open Shrubland of AGU2011. This could be due
to number of factors such as the retrieved SMOS SSM product observed
at a depth of 0–5 cm, whereas in-situ measurement sensors observed at
5 cm. Thus, the strong response to wet and dry period at shallow depth
could be a reasonable explanation for discrepancies in agreement
(Petropoulos et al., 2013). The SMOS values usually range between
(0.001–0.7 m3m−3), although the values generally presented a dry
bias, which causes an underestimation. There is not strong evidence
suggesting systematic overestimation or underestimation of SSM by
SMOS. This result is coincident with some previous studies that have
validated SMOS (Petropoulos et al., 2014). Recent studies (Gumuzzio
et al., 2016; Cui et al., 2017) have suggested that the error in SMOS
could be due to lack of scale representation between SMOS and the in-
situ observations of surface temperature, land cover information, soil
condition in particular and the RFI.

Previous studies focusing on the product comparisons at the annual
scale shows that soil moisture estimates are driven to a certain extent by
the seasonal cycle (Qin et al., 2013; Petropoulos et al., 2018b). In our
study, in several cases of the seasonal cycle investigation there was a
slight underestimation of SSM by SMOS. The negative correlation in
summer can be explained mainly by lack of spatial sampling between
predicted and observed comparison (Al Bitar et al., 2012). Also, it can
be partially attributed to lesser fractional vegetation cover than other

Fig. 7. Agreement between in-situ and predicted SSM from SMOS for the dif-
ferent land cover types in USA. Results are shown for (a) US_ME2, (b) US_TON,
(c) US_VAR and (d) US_WHS. i- 2010 ii- 2011.
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seasons and/or could be associated with the smaller sample size than
other seasons. On the temporal series comparisons, the predicted SMOS
SSM product often overestimates slightly the in-situ observations from
May to June or August. This could be explained by the presence of dew
which is most prominent during summer, spring and autumn, respec-
tively (De Jeu et al., 2005; Du et al., 2012). In winter, SMOS predictions
have low accuracy for European sites and perform very well in USA
sites. As such, no conclusions about the performance of SMOS in winter
can be made from our study. Summer correlation coefficient is gen-
erally suboptimal compared to other seasons for both 2010 and 2011
for USA and European sites.

In the USA sites SMOS showed good agreement between the two
datasets. In term of correlation coefficient, SMOS product performance
was good for TON (WSA), VAR (GRA), and WHS (OSH) in 2010 and
2011, but underperformed for ME22010 (ENF). In the case of the dif-
ferent vegetation cover comparison, SMOS product had negative bias
over ME2 (ENF) and TON (WSA). The product had positive bias over
VAR (GRA) and WHS (OSH) in both years 2010 & 2011. Studies linked
SMOS errors to global parameters such as soil texture, RFI, and land
cover suggested that globally the forest presence in the radiometer field
of view appears to have the great influence on SMOS error up to
(56.8%) whereas 1.7% of the RFI. The extent of the impact varies
among different continents; however, soil texture was highlighted as
the main influence over Europe whereas RFI had the greatest influence
over Asia. Additionally, a land cover difference as a result of spatial
heterogeneity could increase the error in SM within a 0.25◦-resolution
pixel. Whereas, forest as well dense vegetation could increase the SSM
error by negatively affecting microwave penetration (Rotzer et al.,

2012; Leroux et al., 2013; Liu et al., 2018)
The Correlation coefficient (R) was inferior in summer and good for

winter and spring for both 2010 and 2011. In both years RMSE has high
values in winter. This could be due to the frozen soil. During summer
and spring the error could partially be explained by the presence of dew
which has a significant effect on passive microwave observations by
increasing horizontal brightness, and is most prominent during
summer, spring, and autumn, respectively (De Jeu et al., 2005; Du
et al., 2012). RFI can be defined as the disturbance that affects an
electromagnetic radiation emitted from an external source (Murray,
2013). It is a major problem in SMOS SSM retrieval, which decreases
the efficiency of retrieved soil moisture (Jackson et al., 1999). These
disturbances largely reduce or limit the quality of the data. Hence,
signal contamination removal in L-band is an ongoing research chal-
lenge in Europe and many other parts of the world (Kerr et al., 2012;
Oliva et al., 2012; Daganzo-Eusebio et al., 2013).

Overall, the lack of agreement between the predicted and observed
SSM for all scenarios examined here can be attributed to a number of
factors, such as: (1) the topographic and vegetation properties com-
plexity. It is known that high vegetation density (e.g., taller and/or
denser), frozen soils, snow cover, and volume scattering in dry soils are
very critical for SSM operational products retrieval accuracy (Brocca
et al., 2017a,b). With regards to vegetation effects in particular the
quality of SSM retrievals could be strongly affected by the vegetation
structure and water content. (2) The differences in terms of the SSM
sensing depth between the compared datasets. In our study the surface
ground measurement used for the evaluation is at 5 cm. while the
sampling depth of the effective soil moisture of SMOS varies as a

Fig. 8. Agreement between in-situ (red) and predicted SSM (blue) from SMOS for the different land cover types throughout 2010 in the USA. Results are shown for:
(a) US_TON, (b) US_VAR and (c) US_WHS (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

Table 4
Comparison per season between Satellite (SMOS) and observed SSM at all validation sites in USA for 2010 and 2011. Units are in m3/m3.

Measure Autumn 2010 Winter 2010 Spring 2010 Summer 2010 Autumn 2011 Winter 2011 Spring 2011 Summer 2011

ME (bias) 0.009 0.045 −0.013 −0.011 0.006 0.037 0.012 0.055
MAE 0.050 0.079 0.069 0.057 0.049 0.071 0.067 0.064
RMSE 0.074 0.091 0.086 0.082 0.063 0.084 0.078 0.083
R 0.662 0.827 0.792 0.109 0.318 0.837 0.868 0.403
Rs 0.560 0.679 0.735 0.161 0.208 0.805 0.856 0.324
Scatter 0.075 0.080 0.086 0.082 0.063 0.077 0.079 0.065
Slope 0.804 0.590 0.562 0.098 0.461 0.738 0.752 0.569
Intercept 0.033 0.149 0.089 0.083 0.054 0.096 0.078 0.103
N 53 46 31 51 54 45 20 13
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Fig. 9. Agreement between in-situ and predicted SSM from SMOS for the different seasons for all sites together shown here for year USA. In particular, for (a)
Autumn, (b) Winter, (c) Spring, (d) Summer [i] 2010 and [ii] 2011.
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function of topography and land cover characteristics (Deng et al.,
2019). (3) Differences in spatial observation scale. Since the exact scale
of the satellite observation could not be represented by ground ob-
servation, the average point-based measurement is used as a “re-
ference”. However, as is also argued in many studies, it is difficult to
characterize the spatial soil moisture patterns by using in-situ mea-
surement. It is able only to reproduce the temporal dynamic of soil
moisture but not the absolute value (Petropoulos et al., 2015a,b).
Sometimes, if in-situ sensors are not dense enough, it causes mismatch
in scales and hence poor accuracy in comparison. (4) Errors caused by
measurements accuracy of the sensors Land surface factors, such as
topography, seasons and land cover types (particularly at the presence
of forests) have been pointed out as elements to affect the product ac-
curacy and consistency. In addition to that they affect the quality of the
product that can be expected by the final user (Dorigo et al., 2013;
Petropoulos et al., 2014).

6. Conclusions – future work

The quantification of the SMOS SSM product accuracy is crucial for
hydrological applications of the product and for the retrieval algorithm
refinement. This study explores the performance of the SMOS product.
SMOS data were compared to in-situ measurements from FLUXNET
validated observational networks over different land cover, seasonal
and varied climatic zones. This comparison increases our understanding
to the product application at continental expanse. SMOS product is
available for a long term period that can be used in modeling of scale-
related researches such as land surface and hydrological studies. On the
other hand the present evaluation can provide help and feedback for the
current retrieval algorithm improvement.

The study results showed that direct comparison of SMOS opera-
tional product with in-situ observations indicate good performance of
the product within these sites in respect of the RMSE. The main findings
of the study can be summarized as follows:

(1) The overall comparison at variety of sites showed generally rea-
sonable agreement between the SMOS product and the in-situ
measurement of soil moisture, but at different vegetation cover,
some SMOS observations show negative bias. The results were
largely comparable to pervious related validation studies.

(2) The agreement between the in-situ measurements and the product
SSM estimations is observed in regard to different vegetation
covers, where SMOS product displayed negative bias over ME2
(ENF) and TON (WSA), while the positive bias over VAR (GRA) and
WHS (OSH). This conclusion suggests that the vegetation effects
must be carefully accounted for consistent SSM estimations. SMOS
uses nadir optical depth and different polarization incidence angle
to estimate vegetation optical depth. Land cover impacts the var-
iation of soil moisture content because of increasing transpiration
losses and rainfall interception. Furthermore, the type of land cover
also influences the vegetation attenuation and scattering albedo
which can affect the overall soil moisture retrieval. Therefore,
analyzing the effect of vegetation on these algorithms would be
important.

(3) The seasonal periods where the predicted and observed SSM ex-
hibited low correlation coefficient are summer and autumn. This
could partially be explained by the presence of dew which is most
prominent during summer, spring and autumn. Seasonality is one of
the major controls on soil moisture dynamic and its variability can
have very important impacts which can influence overall perfor-
mance of the soil moisture retrieval.

The work presented was focused on temperate areas. As the results
were promising, work is ongoing in expanding the SMOS SSM, SMAP,
ASCAT operational SSM product evaluation over cold and arid regions.
The effect of vegetation cover factor that affects the data quality

mentioned in the previous paragraphs will be comprehensively con-
sidered. In the future, the integration of numerical weather models,
meteorological variables, local hydrological models and information on
land cover could also be utilized to more accurately analyze the effect
of seasonality on soil moisture estimation as already demonstrated in
other studies (Srivastava et al., 2013).
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