See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/239739155

Cytosinium oxalate monohydrate

Article *in* Acta Crystallographica Section E Structure Reports Online · August 2005 DOI: 10.1107/51600536805023494/dn6240/sup2.hkl

citations 5		reads 9	
5 author	s, including:		
	K. Bouchouit Ecole Normale Supérieure de Constantine 50 PUBLICATIONS 340 CITATIONS SEE PROFILE		Nourredine Benali-Cherif University of Science and Technology Houari Boumediene 172 PUBLICATIONS 530 CITATIONS SEE PROFILE
	Claude Lecomte University of Lorraine 538 PUBLICATIONS 9,125 CITATIONS SEE PROFILE		
Some of	the authors of this publication are also working on these related projects:		
Project	Polymorph View project		

book review View project

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Karim Bouchouit,^a Nourredine Benali-Cherif,^b* Slimane Dahaoui,^c El-Eulmi Bendeif^c and Claude Lecomte^c

^aFaculté des Sciences, Département de Chimie, Université de Jijel, 18000 Jijel, Algeria, ^bInstitut des Sciences Exactes, Technologie et Informatique, Centre Universitaire de Khenchela, 40000 Khenchela, Algeria, and ^cLaboratoire de Cristallographie et Modélisation, des Matériaux Minéraux et Biologiques (LCM3B), Université Henri Poincaré Nancy I, UPRESA CNRS 7036, BP 239, 54506 Vandoeuvre les Nancy, France

Correspondence e-mail: benalicherif@hotmail.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.002 Å R factor = 0.050 wR factor = 0.120 Data-to-parameter ratio = 22.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Cytosinium oxalate monohydrate

In the title compound, $C_4H_6N_3O^+ \cdot C_2HO_4^- \cdot H_2O$, the cytosine molecule is protonated and oxalic acid is in the monoionized state. The structure is stabilized by $O-H \cdot \cdot \cdot O$ and $N-H \cdot \cdot \cdot O$ hydrogen bonds, and van der Waals interactions. The water molecules are also found to mediate interactions between oxalate anions and cytosinium cations.

Received 18 July 2005 Accepted 22 July 2005 Online 30 July 2005

Comment

X-ray studies on crystalline complexes of amino acids with carboxylic acids have provided a wealth of information regarding intermolecular interactions and biomolecular aggregation patterns (Vijayan, 1988; Prasad & Vijayan, 1993). The crystal structures of glycinium oxalate (Subha Nandhini *et al.*, 2001*a*), sarcosinium oxalate monohydrate (Krishnakumar *et al.*, 1998) and L-alaninium oxalate (Subha Nandhini *et al.*, 2001*b*) have been elucidated.

This work is part of our research on structural studies of hybrid compounds based on 'organic matrix-inorganic acids' and 'organic matrix-organic acids': guaninium dinitrate hydrate (Bouchouit *et al.*, 2002), D-phenylglycinium nitrate (Bouchouit *et al.*, 2004), guaninium dihydrogenphosphite dihydrate (Bendheif *et al.*, 2003) and *m*-carboxyphenyl-ammonium nitrate (Benali-Cherif *et al.*, 2002).

The present study reports the crystal structure of an 'organic matrix-organic acid' hybrid compound, (I), formed by reaction of cytosine with oxalic acid.

The asymmetric unit contains one cytosinium cation, one semi-oxalate anion and a water molecule. Cytosine is monoprotonated at atom N1 and oxalic acid is mono-deprotonated.

Geometrical parameters of the cytosinium cations are found to be in agreement with those of other similar structures of cytosinium nitrate (Cherouana *et al.*, 2003), cytosine (Barker & Marsh, 1964) and cytosine monohydrate (Jeffrey & Kinoshita, 1963).

The cytosinium cations is connected to $HC_2O_4^-$ anions by six N-H···O hydrogen bonds (Table 1).

The semi-oxalate ions have a planar geometry. Bond distances around atom C3 indicate a carboxylate group with delocalization of the negative charge between atoms O3 and

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

O4. Bond distances around atom C1 are consistent with a carboxylic acid group.

Water molecules play an important role in the cohesion and the stability of the crystal structure; they are involved in three hydrogen bonds connecting one oxalate anion and a cytosinium cation as donor $(O1w-H2w\cdots O2 \text{ and } O1w-H1w\cdots O7)$ and another oxalate anion as acceptor $(O1w\cdots H-O1)$ (Table 1). No hydrogen bonds were observed between water molecules.

Experimental

The title compound, (I), was crystallized by slow evaporation of an aqueous solution of cytosine and oxalic acid in a 1:1 stoichiometric ratio.

Crystal data

 $\begin{array}{l} {\rm C_4H_6N_3O^+ \cdot C_2HO_4^- \cdot H_2O}\\ {M_r} = 219.16\\ {\rm Monoclinic}, {P2_1/c}\\ {a} = 3.6230 \ (3) \ {\rm \mathring{A}}\\ {b} = 11.9750 \ (2) \ {\rm \mathring{A}}\\ {c} = 20.2509 \ (2) \ {\rm \mathring{A}}\\ {\beta} = 91.484 \ (3)^\circ\\ {V} = 878.30 \ (7) \ {\rm \mathring{A}}^3\\ {Z} = 4 \end{array}$

Data collection

Nonius KappaCCD diffractometer φ scans 12842 measured reflections 3139 independent reflections 2226 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.120$ S = 1.033139 reflections 143 parameters H atoms treated by a mixture of independent and constrained refinement $k = -18 \rightarrow 18$ $l = -30 \rightarrow 30$ $w = 1/[\sigma^{2}(F_{0}^{2}) + (0.0394P)^{2}$

 $D_r = 1.657 \text{ Mg m}^{-3}$

Cell parameters from 3139

Mo Ka radiation

reflections

 $\theta = 1.0-32.7^{\circ}$ $\mu = 0.15 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int}=0.021$

 $\theta_{\rm max} = 32.7^{\circ}$

 $h = -5 \rightarrow 5$

Prism, colorless

 $0.20\,\times\,0.20\,\times\,0.15$ mm

+ 0.627*P*] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.37 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3-H3····O4	0.86	1.94	2.7874 (15)	170
N8-H8a···O3	0.86	1.87	2.7267 (17)	173
N8−H8b···O3 ⁱ	0.86	2.10	2.7397 (15)	131
$N8-H8b\cdotsO1^{i}$	0.86	2.58	3.4071 (17)	161
$N1 - H1 \cdots O2^{ii}$	0.86	2.09	2.9127 (16)	160
N1-H1···O4 ⁱⁱ	0.86	2.37	2.9445 (16)	124
$O1 - H1a \cdot \cdot \cdot O1w$	0.82	1.76	2.5592 (16)	165
$O1w - H2w \cdot \cdot \cdot O2^{iii}$	0.85(1)	2.02 (1)	2.8322 (16)	159 (2)
$O1w - H1w \cdots O7^{iv}$	0.85 (1)	1.98 (1)	2.8247 (16)	170 (2)

Symmetry codes: (i) -x, -y + 1, -z; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x + 2, -y + 2, -z; (iv) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

All H atoms were located in Fourier maps; those attached to C and N were treated as riding on their parent atoms, with C-H =0.93 and N-H = 0.86 Å and $U_{\rm iso} = 1.2U_{\rm eq}$ (C,N). For the water molecule, the

ORTEP-3 (Farrugia, 1997) view of the title compound, with the atomic labelling scheme. Displacement are drawn at the 50% probability level. Hydrogen bonds are drawn as dashed lines.

Figure 2

PLATON (Spek, 2003) diagram of the layered packing in the title compound. Hydrogen bonds are drawn as dashed lines.

Ow-H and $H\cdots H$ distances were restrained to 0.85 (1) and 1.39 (2) Å, respectively, and the H atoms were refined with $U_{iso} = 1.2U_{co}(Ow)$.

Data collection: *KappaCCD Reference Manual* (Nonius, 1998); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2003); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2003); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

NBC thanks Le Centre Universitaire de Khenchela, Algeria, for financial support.

References

- Barker, D. L. & Marsh, R. E. (1964). Acta Cryst. 17, 1581-1587.
- Benali-Cherif, N., Cherouana, A., Bendjeddou, L., Merazig, H., Bendheif, L. & Bouchouit, K.(2002). Acta Cryst. E58, 0156–0157.
- Bendheif, L., Benali-Cherif, N., Benguedouar, L., Bouchouit, K. & Merazig, H. (2003). Acta Cryst. E59, 0141–0142.
- Bouchouit, K., Benali-Cherif, N., Benguedouar, L., Bendheif, L. & Merazig, H. (2002). Acta Cryst. E58, o1397–o1399.
- Bouchouit, K., Bendheif, L. & Benali-Cherif, N. (2004). Acta Cryst. E60, o272o274.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.

- Cherouana, A., Bouchouit, K., Bendjeddou, L. & Benali-Cherif, N. (2003). Acta Cryst. E**59**, 0983–0985.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Jeffrey, G. A. & Kinoshita, Y. (1963). Acta Cryst. 16, 20-28.
- Krishnakumar, R. V., Subha Nandhini, M. & Natarajan, S. (1998). Acta Cryst. C54, IUC9800063.
- Nonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands.
- Olejnik, S. & Lukaszewicz, K. (1975). Acta Cryst. B31, 1785–1787. Not cited in text.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Prasad, G. S. & Vijayan, M. (1993). Acta Cryst. B49, 348-356.
- Sheldrick, G. M. (1997). SHELXS97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Subha Nandhini, M., Krishnakumar, R. V. & Natarajan, S. (2001a). Acta Cryst. C57, 115–116.
- Subha Nandhini, M., Krishnakumar, R. V. & Natarajan, S. (2001*b*). Acta Cryst. E**57**, 0633–0635.
- Vijayan, M. (1988). Prog. Biophys. Mol. Biol. 52, 71-99.