

5th International Electronic Conference on Medicinal Chemistry

1-30 November 2019 chaired by Dr. Jean Jacques Vanden Eynde

A pyrazole-containing copper coordination framework : an investigation into its *Hirshfeld* surface analysis, magnetic behavior and biological activity

Amani Direm ^{1,*}, Olufunso Abosede ², Mohammed S. M. Abdelbaky ³, Cemal Parlak ⁴, Santiago García-Granda ³, and Nourredine Benali-Cherif ^{5,6}

¹ Laboratoire des Structures, Propriétés et Interactions Interatomiques LASPI2A, Département des Sciences de la Matière, Faculté des Sciences et de la Technologie, Université "Abbes Laghrour", Khenchela 40.000, Algeria;
² Department of Chemistry, Federal University Otuoke, P.M.B 126, Yenagoa, Bayelsa State, Nigeria;
³ Departamento de Química Física y Analítica, Universidad de Oviedo – CINN, 33006 Oviedo, Spain;
⁴ Department of Physics, Science Faculty, Ege University, Bornova, 35100, İzmir, Turkey;
⁵ Ecole Nationale Polytechnique. Constantine, 25.000, Algeria.
⁶ Université de Bouira, Algeria.

* Corresponding author: Amani_Direm@yahoo.fr

LASPI²A

A pyrazole-containing copper coordination framework : an investigation into its *Hirshfeld* surface analysis, magnetic behavior and biological activity

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

sponsors:

pharmaceuticals

Abstract:

The pyrazole derivatives have been widely used to design materials and complexes with interesting intermolecular interactions and properties. The pyrazole-based complex : *trans*-Dichlorotetrakis (1*H*-pyrazole- κN^2)copper(II) is structurally characterized by means of FT-IR spectroscopy and single-crystals X-ray diffraction. Its magnetic and biological properties are investigated for the first time, showing no particular magnetic behavior and a promising antifungal activity. Moreover, the *Hirshfeld* surfaces used to define the intermolecular environment of the molecules within the crystal together with the 2D-figerprint graphics allowing exploring the properties and the occurrence of each intermolecular contact in the studied complex are discussed in detail and showed the presence of N–H...Cl, C–H...Cl, C–H...*π* and other unconventional intermolecular interactions.

Keywords: Pyrazole-containing complexes, MOFs, intermolecular interactions, *Hirshfeld* surface analysis, magnetic properties, biological activity.

Introduction

Metal organic frameworks (MOFs) consist of metal ions or clusters often coordinated to rigid organic molecules to form one-, two-, or three-dimensional structures. Pyrazole ligands have been widely used in order to build new MOFs and their properties and applications have been extensively investigated [1-3]. Therefore, the properties of pyrazole-based systems have been studied due to their chelating ability with metallic ions as terminal ligands, bridging ligands and precursors for the design of several multi-nitrogen ligands for coordination, bioinorganic and organometallic chemistry [4], in order to build up new coordination polymeric networks and metalorganic frameworks. Additionally, they are well known for their spin-crossover behavior and their biological and medicinal properties as analgesic, anti-inflammatory agents [5], etc. As a contribution to what has been previously reported, we will be describing herein, for the first time, the magnetic properties and the antimicrobial activity of a pyrazole-based copper complex [6]. Furthermore, the *Hirshfeld* surfaces and the 2D-figerprint graphics [7] allowing the understanding of the properties and the occurrence of each intermolecular contact around the studied complex molecules will be discussed exclusively in detail.

Synthesis

(1)

FTIR spectroscopy

MDP

sponsors:

pharmaceuticals

Crystal structure

Space Group	C2/c
a (Å)	13.5430(10)
b (Å)	9.1480(10)
c (Å)	14.6480(10)
β (°)	116.700(5)
$R[F^2 > 2\sigma(F^2)]$	0.025
wR(F ²)	0.069
Δho_{max} , Δho_{min} (e Å ⁻³)	0.34, -0.29

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

sponsors: MDPI

pharmaceuticals

Hirshfeld suraface analysis

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

pharmaceuticals

Hirshfeld suraface analysis Fingerprint plots

Hirshfeld suraface analysis Cl...H/H...Cl Contacts

N4–H4N...Cl1 (2.64 Å)

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

sponsors:

Hirshfeld suraface analysis N...H/H...N Contacts

sponsors:

MDP

pharmaceuticals

Hirshfeld suraface analysis H...H Contacts

Hirshfeld suraface analysis C...C Contacts

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

sponsors:

pharmaceuticals

Hirshfeld suraface analysis C...N/N...C Contacts

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

sponsors:

pharmaceuticals

Hirshfeld suraface analysis N...N Contacts

sponsors:

MDP

pharmaceuticals

Hirshfeld suraface analysis

Magnetic properties

Magnetic properties

Cation	Ө (К)	χ _m (cm³/mol)	C _m (cm³.K/mol)	$\mu_{eff\ exp}$ (μ_{B})	g	J	μ _{eff cal} (μ _B)
Cu(II)	-0.5	-1,19 x 10 ⁻⁴	0,423	1.84	2.091	0.494	1.80

Biological activity

The complex was tested for its in-vitro antibacterial activity against *Staphylococcus aureus* and *Escherichia coli*. Moreover, it was screened against two fungi, namely *Candida specie* and *Aspergillus niger*.

Biological activity

	(1)			
	C ₁ = 10 mg⋅mL ⁻¹	C ₂ = 20 mg⋅mL ⁻¹		
Staphylococcus aureus	NE	NE		
Escherichia coli	NE	NE		
Candida specie	NE	08		
Aspergillus niger	12	18		

Biological activity

On the basis of the minimum inhibitory concentration (M.I.C) and the diameter of the inhibition zone, the complex (1) showed higher fungicidal activity against *Aspergillus niger* (12 mm for C1 = 10 mg·mL⁻¹ and 18 mm for C2 = 20 mg·mL⁻¹) compared to its inhibition of *Candida specie* (08 mm for C2 = 10 mg·mL⁻¹). However, it has showed no effect on the tested bacteria.

Conclusions

A pyrazole-based copper (II) complex was synthesized and fully characterized using FTIR spectroscopy and single-crystal X-ray diffraction. The *Hirshfeld* surface analysis has showed the presence of diverse unconventional intermolecular interactions, namely N–H...Cl, C–H...Cl, C–H...N, C–H...H–C and N–H...H–C. The magnetic results measured at 2-300K have shown a paramagnetic behavior, which was predicted from the crystal structure displaying a discrete mononuclear complex, with a shortest Cu...Cu distance of 8.172 Å.

By screening the pyrazole complex against *Staphylococcus aureus* and *Escherichia coli*, we have found out that it has no considerable effect for the given concentrations. Nevertheless, it has displayed an interesting activity against the screened fungi, namely *Aspergillus niger* and *Candida specie*, with a higher inhibition of the second specie.

References

[1] Klingele, J., Dechert, S. & Meyer, F. (2009). Coord. Chem. Rev. 253, 2698-2741.
[2] a) Stollenz, M., Gehring, H., Konstanzer, V., Fischer, S., Dechert, S., Grosse, C. & Meyer, F. (2011). Organometallics. 30, 3708-3725; b) Frensch, L. K., Pröpper, K., John, M., Demeshko, S., Brückner, C. & Meyer, F. (2011). Angew. Chem. 123, 1456-1460.
[3] a) Olguín, J. & Brooker, S. (2011). New J. Chem. 35, 1242-1253.
[4] a) Montoya, V., Pons, J., Garcia-Antón, J., Solans, X., Font-Bardia, M. & Ros, J. (2007). *Inorg. Chim. Acta.* 360, 625–637. b) Itoh, T., Fuji, Y., Toda, T. (1996). *Bull. Chem. Soc. Jpn.* 69, 1265. c) Sun, Y. J., Cheng, P., Yan, S. P., Liao, D. Z., Jiang, Z. H., Shen, P. W. (2002). *J. Coord. Chem.* 55, 363. d) Lam, M. H. W., Tang, Y. -Y., Fung, K. -M., You, X.-Z., Wong, W.-T. (1997). *Chem. Commun.* 957.
[5] a) Kahn, O., Martinez, C. J. (1998). *Science. 279*, 44-48. b) Olguín, J., Brooker, S. (2011). *Coord. Chem. Rev.* 255, 203-240. c) Gürsoy, A., Demiryak, S., Çapan, G., Erol, K. & Vural, K. (2000). *Eur. J. Med. Chem.* 35, 359–364. d) Lynch, D. E. & McClenaghan, I. (2005). *Acta Cryst.* E61, o2349– 02351.

[6] Direm, A., Tursun, M., Parlak, C. & Benali-Cherif. N. (2015). *J. Mol. Struct.* **1093**, 208–218.
[7] a) Spackman, M. A. & Jayatilaka, D. (2009). *Cryst. Eng. Comm.*, **11**, 19–32. b) Spackman, M. A. & McKinnon, J. J. (2002). *Cryst. Eng. Comm.* **4**, 378–392.

Acknowledgments

Université Abbes Laghrour Khenchela, Algeria Spanish MINECO (MAT2016-78155-C2-1-R, MAT2013-40950-R, and FPI grant BES-2011-046948) Gobierno del Principado de Asturias (GRUPIN14-060) and FEDER

