Catalytic Performance of γ-Al₂O₃–ZrO₂–TiO₂–CeO₂ Composite Oxide Supported Ni-Based Catalysts for CO₂ Methanation

Authors

Salvatore Abate, Chalachew Mebrahtu, Emanuele Giglio, Fabio Deorsola, Samir Bensaid, Siglinda Perathoner, Raffaele Pirone, Gabriele Centi

Publication date 2016/4/27

Journal Industrial & Engineering Chemistry Research

Volume 55

Issue 16

Pages 4451-4460

Publisher American Chemical Society

Description

Composite oxide supported Ni-based catalysts were prepared by a wet impregnation technique and applied to the methanation of carbon dioxide. The composite oxide supports were prepared by an impregnation–precipitation method using commercial γ -Al₂O₃ powder as a host with variation of the percentage of loading of ZrO₂, TiO₂, and CeO₂ promoters from their respective salt precursors. NH₄OH was used as the precipitating agent. The as-prepared catalysts were characterized by Brunauer–Emmet–Teller surface area analysis, atomic absorption spectroscopy, X-ray diffraction, temperature-programmed reduction by H₂ (H₂-TPR), and CO chemisorption. Catalytic activity of the newly synthesized catalysts was investigated toward hydrogenation of CO₂ at atmospheric pressure by varying reaction temperature between 250 and 400 °C (with increasing step equal to 25 °C). Experimental results revealed that the ...