Pure and Fe-doped CeO2 nanoparticles obtained by microwave assisted combustion synthesis: Physico-chemical properties ruling their catalytic activity towards CO oxidation and ...

Authors

Tapas R Sahoo, Marco Armandi, Rossella Arletti, Marco Piumetti, Samir Bensaid, Maela Manzoli, Sirish R Panda, Barbara Bonelli

Publication date 2017/8/15

Journal

Applied Catalysis B: Environmental

Volume 211

Pages 31-45

Publisher Elsevier

Description

A sample of pure CeO_2 and two samples of Fe-doped CeO_2 containing either 3 or 6 at.% Fe were obtained by microwave assisted combustion synthesis. The powders were extensively characterized by several techniques and tested as catalysts for both CO oxidation and soot combustion.

As-synthesized CeO₂ nanoparticles have a mostly squared shape and size well below 100 nm; they are characterized by the presence of surface Ce³⁺ species likely due to the occurrence of very defective ceria crystalline phases, as revealed by HR-TEM. Oxidation at 400 °C leads to the formation of a hydroxyls-rich surface, with several types of OH groups related to both Ce⁴⁺ and Ce³⁺ species; reduction in H₂ at mild temperature (200 °C) leads both to reduction of surface Ce⁴⁺ to Ce³⁺ and formation of new OH groups.

With respect to CeO_2 nanoparticles, Fe-doped ones have, as a whole, a larger size and less abundant ...