Low temperature DPF regeneration by delafossite catalysts

Authors Samir Bensaid, N Russo

Publication date 2011/11/1

Journal

Catalysis today

Volume 176

Issue

1

Pages 417-423

Publisher Elsevier

Description

Several Li–Cr delafossite catalysts (LiCrO₂, LiCr_{0.9}O₂, LiCr_{0.8}O₂, LiCr_{0.7}O₂, Li_{0.9}CrO₂, Li_{0.8}CrO₂ and Li_{0.7}CrO₂) were prepared via a highly exothermic and self-sustaining reaction, the so-called "solution combustion synthesis (SCS)" method, and characterized by means of XRD, BET, FESEM-EDS, H₂-temperature programmed reduction (TPR) and XPS analyses, as catalysts for the combustion of soot, a major pollutant emitted by diesel engines. These catalysts already showed appreciable activity at 350 °C towards the catalytic combustion of soot even under loose contact conditions. The best prepared catalyst (LiCr_{0.9}O₂) could ignite soot combustion well below 350 °C, which is inside the range of temperatures reached at the exhaust line of a diesel engine. The correlation between the activity order and the capability to provide surface adsorbed oxygen (O⁻) by the prepared delafossite catalysts, enabled by a ...