CO2 methanation over Ni/Al hydrotalcite-derived catalyst: Experimental characterization and kinetic study

Authors

Paolo Marocco, Eduard Alexandru Morosanu, Emanuele Giglio, Domenico Ferrero, Chalachew Mebrahtu, Andrea Lanzini, Salvatore Abate, Samir Bensaid, Siglinda Perathoner, Massimo Santarelli, Raffaele Pirone, Gabriele Centi

Publication date 2018/8/1

Journal

Fuel

Volume 225

Pages 230-242

Publisher Elsevier

Description

The catalytic performance of a Ni/Al hydrotalcite derived catalyst for CO₂ methanation was analysed under different operating conditions. The as synthesized sample has been characterized through atomic adsorption spectroscopy (AAS) X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, temperature programmed reduction (TPR) and CO chemisorption. Experimental investigation was carried out at atmospheric pressure by varying the reactor bed temperature (within the range 270–390 °C), the H₂/CO₂ feed ratio and the reactant flow rate. The impact of methanation products on the reaction rate was also analysed by co-feeding reactants with steam and methane. Stability tests were also performed, showing a good catalytic performance of the hydrotalcite-derived catalyst over time. Different kinetic rate expressions were then developed starting from experimental results. Power law, power law with an