Effect of surface area on the rate of photocatalytic water oxidation as promoted by different manganese oxides

Authors

Carminna Ottone, Marco Armandi, Simelys Hernández, Samir Bensaid, Marco Fontana, Candido Fabrizio Pirri, Guido Saracco, Edoardo Garrone, Barbara Bonelli

Publication date 2015/10/15

Journal

Chemical Engineering Journal

Volume

278

Pages 36-45

Publisher

Elsevier

Description

Commercial Mn_2O_3 , Mn_3O_4 and MnO_2 and the same after thermal or ball-milling treatments have been examined as catalysts for the photocatalytic water oxidation reaction, using $[Ru(bpy)_3]^{2+}$ as photosensitizer and $S_2O_8^{2-}$ as sacrificial electron acceptor. Tests were performed in a bubbling reactor, allowing the calculation of the actual rate of O_2 evolution as a function of time from raw data (oxygen flow, concentration of dissolved oxygen, DO) through a model able to take into account mass transfer phenomena Hernández et al. [19]. A few parameters are proposed for measuring activity, and comparison among them is made. The activity per unit mass of commercial samples is $Mn_2O_3 > MnO_2 > Mn_3O_4$, in agreement with the literature. Increase in the surface area brought about by milling correspond, as expected, to a steady increase in activity in the case of Mn_3O_4 , whereas had no effect with Mn_2O_3 . The ...