Composite Cu-SSZ-13 and CeO2-SnO2 for enhanced NH3-SCR resistance towards hydrocarbon deactivation

Authors

Ferenc Martinovic, Fabio Alessandro Deorsola, Marco Armandi, Barbara Bonelli, Regina Palkovits, Samir Bensaid, Raffaele Pirone

Publication date 2020/9/8

Journal Applied Catalysis B: Environmental

Pages 119536

Publisher Elsevier

Description

The state-of-the-art Cu-SSZ-13 was mixed with CeO₂-SnO₂ to form a Composite catalyst which was resistant towards hydrocarbon poisoning of the NH₃-mediated NO_x-SCR reaction. The Composite was prepared via a solid-state synthesis through ball milling, which did not influence the final morphology. The resistance towards propylene poisoning was remarkably enhanced as the NO_x conversion over the Composite catalyst decreased only 9% compared to 40 % over the unmodified Cu-SSZ-13. Transient and dynamic reactivity studies showed that the coke formed during the C₃H₆ protolytic polymerization was dispersed inside the zeolite pores and the addition of CeO₂-SnO₂ did not prevent its formation nor enhance its oxidation with O₂. The ion-exchanged Cu was the principal active component for the coke and hydrocarbon oxidation and the hydrocarbon poisoning prevention was attributed to the complex ...