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Abstract 
  
The objective of this study was to investigate the relationships among body condition score 

(BCS) and plasma metabolite concentrations, and subsequent reproductive performance of 

Montbéliarde cows in Algeria. The study was conducted in two commercial dairy farms in 

Tizi-Ouzou area. Blood samples were collected from 50 Montbéliarde dairy cows at 2, 4, 6 

and 8 weeks postpartum to measure serum non-esterified fatty acids (NEFA), β-

hydroxybutyrate (BHBA), glucose, total cholesterol, urea nitrogen, total protein, aspartate 

aminotransferase (AST), alanine aminotransferase (ALT), γ-glutamyltransferase (γGT), 

calcium, magnesium, potassium, phosphorus, sodium, and progesterone. Body condition score 

(BCS) was assessed at calving and at each time when blood samples were taken. Resumption 

of postpartum cyclicity was evaluated by progesterone concentrations (≥1 ng/mL) at 4, 6, and 

8 weeks postpartum. 
  
Increased BHBA, NEFA and glucose concentrations were associated with a lower probability 

of ovarian activity resumption (ROA) and pregnancy at first insemination (P/1-AI). However, 

concentrations of plasma cholesterol, AST, ALT, TG and total protein were positively 

associated with ROA. In addition, increased BHBA and sodium were associated with 

increased of time to conception. Moreover, decreased Mg concentrations were associated with 

increasing of time from calving to first insemination. No significant effect was seen between 

BCS at calving and BCS loss on P/1-AI. So balanced nutrition and reproduction management 

can ameliorate reproductive performance. 
  
Key words: BCS, dairy cow, fertility, nutritional parameter, plasma metabolite, progesterone, 

post-partum. 
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L'objectif de l’étude est d'explorer les relations entre l'état corporel (BCS), les concentrations 

de certains métabolites du plasma, et les performances de reproduction de vaches 

Montbéliardes en Algérie. L'étude a été menée dans 2 fermes laitières privées situées dans la 

wilaya de Tizi-Ouzou. Des échantillons de sang ont été prélevés sur 50 vaches laitières de 

race Montbéliarde à 2, 4, 6 et 8 semaines post-partum, afin de mesurer les acides gras non 

estérifiés (AGNE), le β-hydroxybutyrate (BHBA), le glucose, le cholestérol total, l’urée, les 

protéines totales, l’aspartate aminotransférase (AST), l’alanine aminotransférase (ALT), la γ-

glutamyltransférase (γGT), le calcium, le magnésium (Mg), le potassium (K), le phosphore 

(P), le sodium (Na) et la progestérone (P4). La note d'état corporel (NEC) a été estimée au 

vêlage ainsi qu’aux moments des prélèvements de sang. La reprise de la cyclicité post-partum 

a été évaluée par le dosage de la progestéronémie (≥1 ng / ml) dans les  semaines 4, 6 et 8 

post-partum. 
  
L’augmentation des teneurs en BHBA, AGNE et du glucose ont été associés à une probabilité 

plus faible de la reprise de l’activité ovarienne (RAO) et de la gestation à la première 

insémination (P / 1-AI). Cependant, les concentrations du cholestérol plasmatique, AST, 

ALT, TG et des protéines totales ont été positivement associées à la RAO. En outre, 

l'augmentation du BHBA et du sodium ont été associés à une augmentation de l’intervalle de 

temps pour avoir une conception, alors qu’une diminution des concentrations en Mg a été 

associée à l'augmentation de l’intervalle entre le vêlage et la première insémination. Aucun 

effet significatif n'a été observé entre la NEC au vêlage ou la perte de NEC et P / 1-AI. Ainsi, 

une alimentation équilibrée et une bonne gestion de la reproduction peuvent améliorer les 

performances de reproduction. 
  
Mots-clés : fertilité, métabolite du plasma, paramètre nutritionnel, progestérone, vache 

laitière. 

  
Introduction 
  
In Algeria, livestock policies requested to reduce reliance on milk imports, based on 

importing heifers of dairy cows especially Montbéliarde breed. This breed had been imported 

from France (Madani et al 2008) and seem most adapted to Algerian climate and farming 

conditions especially in the north of the country (Kadi et al 2007). However, the dairy 

productions as well as the reproductive performances of these imported cows are still far less 

than those obtained in their country of origin (Madani et al 2008; Miroud et al 2014). For 

example, the pregnancy rate at first AI (P/IA) in Algeria was 40.5% (Abdelli et al 2015) 

vs 54% in France (Barbat et al 2010). The most important factor of this poor reproductive 

performance is the nutrition (Mouffok et al 2011). Previous research confirmed that nutrition 

played an important role in reproduction. Consequently, partitioning of tremendous demand 

for nutrients to milk production early in lactation, at the expense of reproduction, has shaped a 

conceptual framework to address the effect of nutritional imbalances on future reproductive 

performance (Walsh et al 2007), as measured by days to resumption of ovarian activity 

(ROA), probability of pregnancy after first AI (P/AI) and time to conception. The concept of 

prioritization of energy and other nutrients, also known as homeorhesis (or teleophoresis), 

was described in 1980 (Bauman and Currie 1980) and has set the foundation for the study of 

negative energy balance (NEB) using different methods, namely body condition score (BCS) 

measurements and assays on plasma metabolites, enzymes or hormones (Tillard et al 2008; 

Ribeiro et al 2013; Rutherford et al 2016). Recently, there have been some reports on the 

relationships among the resumption of ovarian cyclicity postpartum and nutritional end 

points, such as body condition score (BCS) and several plasma metabolites in dairy cows 



(Shrestha et al 2005; Tillard et al 2008; Damptey et al 2014; Jeong et al 2015).  They have 

reported associations of prolonged intervals to first postpartum ovulation with some plasma 

metabolites, such as non-esterified fatty acids (NEFAs), 3-β-hydroxybutyrate (BHBA), total-

cholesterol (T-cholesterol), aspartate aminotransferase (AST), γ-glutamyltransferase (γGT), 

alanine aminotransferase (ALT), urea nitrogen, total protein, calcium, magnesium, and 

phosphorus in plasma (Shrestha et al 2005; Tillard et al 2008; Damptey et al 2014; Jeong et al 

2015). These blood metabolites with BCS changes may help establish strategies for dairy 

reproductive management (Jeong et al 2015). The objective of this study was to determine the 

relationship of blood metabolites, BCS and subsequent reproductive performance of 

Montbéliarde cows in Algeria. 
  

Materials and methods 
  
Animals and herds 

  
The study was conducted in two commercial dairy farms (A and B) in Tizi-Ouzou willaya 

(longitude 36° and latitude 4°), Algeria. The area has a Mediterranean climate with two 

distinct seasons, with peak summer temperatures reaching 38°C and winter with a minimum 

temperature below freezing. Fifty Montbéliarde dairy cows, 25 primiparous and 25 

multiparous equally distributed on each farm, were followed throughout lactation. Their daily 

average milk production was 25 kg/d. During the period of study, the cows received green 

fodder, clover in cold season and meadow fodder in warm season with vetch oats hay. Based 

on the production, basic ration was individually supplemented with commercial concentrate 

(18% digestible raw protein), as well as roughly crushed maize grains, soybean meal, barley 

and vitamin-mineral mixture.  
  
Sample collection and blood analysis 

  
Blood samples were collected from the coccygeal vein into two 10 ml vacutainers, one 

containing lithium heparin and the other containing no anticoagulant. Samples were taken 

before the morning feeding at four times (wk 2, 4, 6, and 8 postpartum). At these time points, 

blood samples were carried out simultaneously. Samples were kept chilled and allowed to clot 

(for the ones containing no anticoagulant). Samples were centrifuged at 1,400 × g for 10 min 

to collect serum within 5 h of blood collection and were frozen at −20°C until analyzed. 

Heparinized plasma was used for the determination of NEFAs, BHBA, glucose, total 

cholesterol, triglycerides (TG), urea nitrogen, total protein (PT), aspartate aminotransferase 

(AST), γ-glutamyltransferase (γGT), alanine aminotransferase (ALT), calcium, magnesium, 

sodium, potassium, and phosphorus levels. All blood metabolites except NEFAs and BHBA 

were determined with enzymatic method by spectrophotometric assay in an 

autoanalyzer (Cobas 6000, Roche Hitachi, Mannheim, Germany) in a commercial laboratory, 

using commercial kits. The intra and interassay coefficients of variation were < 5% for each 

assay. Serum BHBA concentration (mmol/L) was measured using a hand-held meter 

(Precision Xceed, Abbott Laboratories, Abbott Park, IL) at room temperature (Iwersen et al 

2009; McArt et al 2013). OptiumXceed is a hand-held device used to test blood BHBA 

concentrations; his sensitivity and specificity was 85 to 90% and 94 to 98%, respectively 

(Voyvoda and Erdogan 2010). Because there were not sufficient reagents for NEFAs, plasma 

NEFAs concentration was measured one time (at wk 4) using the DVM- NEFA test 

(Veterinary Diagnostics, Newburg, Wisconsin, USA). The sensitivity and specificity of the 

DVM-NEFA test were 84% and 96%, respectively (Leslie et al 2003). Progesterone (P4) was 



quantified by ELISA (Elecsys 2010, Roche Diagnostics GmBH, Mannheim, Germany) using 

progesterone ECL kit. These kits can be used to measure P4 in plasma bovine (Ayad et al 

2014). 
  
Fatness assessment 

  
A body condition score (BCS), on a five-point scale scored to the nearest half-point, was used 

to assess the individual level of body fatness and its variation during the postpartum period 

(Edmondson et al 1989). Cows were scored five times before eating, at fortnightly intervals, 

from calving to 52 days in milk (DIM). All BCS measurements were done by a trained single 

operator for a given herd. Two variables of fatness were of peculiar importance: at calving 

(BCS-calv) and the difference from calving to wk 4 postpartum (dBCS). 
  
Determination of estrous cyclicity and pregnancy diagnosis 

  
Pregnancy was diagnosed in all cows on d 30 after AI via transrectal ultrasonography of the 

uterus and its contents and characterized by visualization of a live embryo. Cows diagnosed as 

pregnant on d 30 were reexamined by transrectal palpation 35 d later. Progesterone data were 

dichotomized using a threshold of 1 ng/ml for indicating the presence of an active corpus 

luteum (Stevenson et al 2006). Ovulation was considered to have occurred 5 days before the 

first progesterone measurement >1 ng/ml and was followed by another consecutive sample of 

luteal concentrations. Resumption of ovarian activity was calculated at 52 DIM. 
  
Statistical analysis 

  
Statistical analyses were performed with SAS (Version 9.1.3; SAS Institute Inc, Cary, NC). 

Postpartum plasma concentrations of metabolites were reported as continuous variables. Each 

variable of these metabolites was tested for normal distribution using the Proc 

Univariate (SAS Inst. Inc.). If the variable does not fit the normal distribution, adjustments 

such as logarithmic, squared, square root transformations are possible tools to normalize the 

data to calculate valid descriptive statistics (Farver 1997). Fertility responses of interest were 

estrous cyclicity on day 52 postpartum, P/AI, time from calving to first insemination and time 

to pregnancy. 
  
Because serum metabolites were measured over time, blood metabolite concentrations, except 

NEFAs, were analyzed by fitting the fixed effects of day, cycling, or pregnancy status and the 

interaction of day with cycling or pregnancy status in a repeated measures variance analysis 

using a PROC MIXED models (SAS Inst. Inc.). The model included assessment factors 

(group, time), individual variability (within farm) and the group* time. The layout of our 

model can be summarized as follows: 
  
Yijklm = µ + Gi + Tk + GTik + Bl(im)  +  ɛiklmn; 
  
where: 
  
Yiklm = m-th observation of the l-th cow Bl within the i-th group 
Gi* farm Fm, at the k-thtimeTk; 
  
µ = total average; 



Gi = effect of the i-th group [two groups (ER/LR and Pregnant/not pregnant)]; 
Tk = effect of the k-th time to calving 
GTik effect of the interaction between the i-th group and the kth time to calving; 
Bl(im) = effect of the l-th cow within the i-thgroup* m-th 
farm; 
ɛiklm = random effect or error. 
  
Covariance structure used (compound symmetry) was chosen based on the Akaike 

information criterion. The analysis was carried out using compound symmetry for covariance 

structure. 
The effect of plasma metabolites at each week and peripartum disease on probability of 

pregnancy at first insemination (P/IA) and resumption of postpartum: activity (ORA) was 

assessed using mixed-effects multivariable (PROC GENMOD), using a normal distribution 

and cow as a random affect. Cow level variables offered to the model included parity, season 

of calving, initial BCS (BCS-calv), change in BCS (dBCS), season of calving. A manual 

backward stepwise regression was used in all models, and elimination was performed on the 

basis of the Wald statistic criterion when P > 0.10 and biologically not important.  No 

interaction terms were tested. Cows were considered as random effects to account for the 

correlation between observations of the same cow and correlations between cows in the seam 

farm.  Odds ratios (OR) and 95% confidence intervals (95% CI) were determined by logistic 

regression. Cow parity was grouped as either primiparous or multiparous, whereas calving 

season was grouped as cold season (September to March; 24 cows) or warm season (May to 

August; 26 cows). 
  
Time to first insemination and conception were analyzed with multivariable survival analysis 

using Cox’s proportional hazards regression accounting for clustering of cows within farms 

with Proc PHREG (SAS Inst. Inc.). A Stacked line plot of BCS changes was generated 

using Prism 6.07 (GraphPad Software, Inc. La Jolla, CA USA). 
  

Results 
  
Ovarian resumption 

  
Two groups were formed based on differences in onset of postpartum resumption of ovarian 

activity. Early responders (ER, n = 28/50 or 56% of cows), showed first ovulation between 15 

d and 52 d after parturition. Late responders (LR, n = 22/50 or 44%) were cows with a first 

ovulation between 53 and 87 d postpartum. 
  
There was no effect of group (early responders/ late responders) and interaction between 

group and sampling time (P > 0.05) on all plasma metabolites, but there were significant 

effects of sampling time (P < 0.0001) on BHBA, Cholesterol, ALT and Mg (Table 1). For 

BCS, there was no effect of group and sampling time (P > 0.05), but there were significant 

effects of interaction between group and sampling time (P < 0.05, figure 1). 
  
For the results of the final multivariable logistic regression as shown in Table 2, only 6 

variables were retained for each week (wk 2 and 4). Within individual weeks after calving, an 

association between plasma Glucose (OR=0.52; P =0.01), TG (OR=1.27; P =0.03), AST 

(OR=3.17; P =0.01) and Ca (OR=0.38; P =0.04) concentrations and the ORA was identified, 

accounting for the effect of correlation of cows within a farm in week 2. In week 4, an 



association between plasma BHBA (OR=0.54; P <0.0001), Cholesterol (OR=1.68; P =0.02), 

PT (OR=3.39; P =0.01) and ALT (OR=2.05; P <0.0001) concentrations and the ORA was 

identified. However, there was no effect (p>0.05) of parity on ORA in both times, BHBA in 

wk2 and NEFAs in wk4. 
  

Table 1. Comparison of means and standard deviation (SD) of serum constituents and body condition score (BCS) 

between cows’ group (G) early responders (ER) and late responders (LR) at days 0, 15, 30, 41 and 52 relating 

parturition. 
P* Day 52 Day 41 Day 30 Day 15 Day 0 G metabolites 

Time*G Time G 

  0.85 <0.0001 0.03 0.70±0.32 0.85±0.32 0.77±0.40 0.63±0.35   ER BHBA 

(mmol/l) 0.82±0.24 1.14±0.49 1.06±0.32 0.66±0.28 - LR 
0.99 0.04 0.81 0.67±0.14 0.62±0.16 0.59±0.09 0.54±0.11 - ER Glucose 

(g/l) 0.65±0.09 0.69±.15 0.63±0.10 0.63±0.13 - LR 
0.92 <0.0001 0.40 1.54±0.39 1.47±0.34 1.37±0.30 1.07±0.26 - ER Chol (g/l) 

1.55±0.38 1.48±0.40 1.33±0.34 0.99±0.37 - LR 
0.28 0.32 0.24 0.19±0.07 0.20±0.09 0.21±0.14 0.24±0.27 - ER TG (g/l) 

0.18±0.06 0.16±0.06 0.17±0.06 0.15±0.06   LR 
0.68 0.38 0.71 0.25±0.13 0.24±0.11 0.27±0.12 0.25±0.08 - ER Urea (g/l) 

0.27±0.12 0.23±0.11 0.25±0.12 0.19±0.09   LR 
0.77 0.33 0.57 78.5±9.98 75.3±12.7 78.5±9.34 73.7±10.8 - ER PT (g/l) 

78.1±9.33 78.9±10.1 77.3±8.43 74.1±12.5   LR 
0.78 0.79 0.21 90.2±20.1 89.7±23.6 92.4±18.9 94.8±16.3 - ER AST (UI) 

100±46.2 87.4±18.3 84.6±19.1 85.1±14.1   LR 
0.91 <0.0001 0.83 37.2±12.8 35.1±13.9 34.2±11.1 29.4±8.72 - ER ALT (UI) 

31.3±8.94 33.2±10.9 27.1±8.68 23.6±6.75   LR 
0.97 0.45 0.17 22.7±7.53 22.3±8.73 21.3±10.7 22.3±15.5 - ER γGT (UI) 

28.6±37.3 20.2±3.82 20.4±4.27 19.8±4.99   LR 
0.85 0.50 0.53 85.4±10.6 84.6±13.6 87.7±8.22 83.6±9.88 - ER Ca (mg/l) 

86.1±11.3 88±9.60 87.5±11.1 84.9±11.1   LR 
0.57 0.83 0.37 59.7±19.1 53.2±15.1 55.7±13.7 56.5±13.6 - ER P (mg/l) 

54.7±16.6 58.1±18.9 60.4±16 55.8±10.4   LR 
0.99 <0.0001 0.11 18.8±4.17 18.1±3.93 18.9±3.67 18.2±4.32 - ER Mg (mg/l) 

18.3±3.35 19.9±5.06 18.3±2.81 16.8±4.37   LR 
0.65   0.91 0.34 139±6.62 134±7.62 137.±7.05 138±7.05 - ER Na (Meq/l) 

138±5.58 138±6.56 136.±5.33 140±10.05   LR 
0.75 0.93 0.03 4.50±0.52 4.49±0.85 4.36±0.57 4.27±0.46 - ER K (Meq/l) 

4.38±0.48 4.40±0.54 4.49±0.37 4.47±0.43   LR 
0.0005 0.13 0.06 2.27±0.32 2.27±0.25 2.38±0.22 2.52±0.29 2.86±0.30 ER BCS 

2.07±0.18 2.11±0.21 2.27±0.25 2.61±0.21 2.93±0.36 LR 
* Significant difference was considered at the level of P < 0.05. 

  
Table 2. Final logistic regression model of the association between parity, glucose, triglycerides 

(TG), aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol, 

serum non-esterified fatty acid (NEFA), 3-β-hydroxybutyrate (BHBA), total protein (PT) and 

calcium (Ca) concentrations in the second and fourth week postpartum with the risk of 

resumption of ovarian activity at 52 days in milk (DIM). 
Variable Estimate SE P-value OR 95% CI 

Week 2           
Parity 0.05 0.14     0.89 1.02      0.77-1.34 
BHBA (mmol/l) -0.30      0.16      0.05 0.74      0.54-1.01 
Glucose (g/l) -0.65     0.27      0.01 0.52      0.30-0.89 
TG (g/l) 0.24    0.11     0.03 1.27     1.02-1.59 
AST (UI) 1.15     0.45     0.01 3.17      1.31-7.67 
Calcium (mg/l) -0.97   0.49      0.04 0.38    0.14-0.99 
Week 4           
Parity -0.02      0.13     0.89 0.98      0.76-1.27 
NEFAs (mmol/l) -0.22   0.20     0.26 0.79     0.53-1.18 



BHBA (mmol/l) -0.61  0.15      <0.0001 0.54      0.39-0.73 
Cholesterol (g/l) 0.52    0.22    0.02 1.68     1.08-2.61 

PT (g/l) 1.22      0.48     0.01 3.39 1.30-8.79 
ALT (UI) 0.71      0.48     <0.0001 2.05      1.46-2.86 

Pregnancy at the first AI 

  
Thirty-four percent of the cows were pregnant after first AI. There was no effect of interaction 

between group P/NP cows and sampling time (P > 0.05) on all plasma metabolites, but there 

were significant effects of sampling time (P < 0.0001) on BHBA, Cholesterol, ALT and MG. 

The BHBA and K concentrations in the pregnant cows group tended to be higher (P < 0.05) 

compared to the non-pregnant cows group (Table 3). Also, there were significant effects of 

interaction between examined groups and sampling time (P < 0.001) only on BCS (figure 1). 
  
The results of the multivariate prediction models within individual weeks after calving are 

shown in Table 4.  From these models, cows with high BHBA concentration in wk 2 were 

significantly less likely to be diagnosed pregnant after first insemination (OR=0.65; P=0.001). 

In week 4 after calving, an association between plasma BHBA (OR=0.75; P= 0.03), NEFAs 

(OR=0.52; P =0.002), glucose (OR=0.53; P =0.01), AST (OR=0.41; P <0.0001) and 

phosphorus (OR=0.61; P= 0.01) concentrations and the P/IA was identified. 
  
However, P/AI did not differ significantly among cows with different BCS-Calv even if cows 

with higher BCS-Calv tended (p = 0.078) to be more frequently pregnant. Likewise, no 

significant association was found between P/IA and dBCS (P=0.63). 

 

 

 
 
  

 

Figure 1. Body condition score (BCS) 

(Mean ± SD) from calving to 52 days 

postpartum in dairy cows that either 
ovulated (early responders) or had not 

ovulated (late responders) (A) at 52 days in 

milk (DIM) or were either pregnant or not 

pregnant after first insemination (B). 

  
Table 3. Comparison of means and standard deviation (SD) of serum constituents and BCS between cows group 

(G): pregnant (P) and not pregnant (NP) after first AI at days 0, 15, 30, 41 and 52 relating parturition. 
*P Day 52 Day 41 Day 30 Day 15 Day 0 G PR/IA 

Time*G Time G 
0.35 <0.0001 0.05 0.67±0.35 0.75±0.19 0.68±0.26 0.51±0.21 - P BHBA 

(mmol/l) 0.80±0.25 1.09±0.47 1.01±0.40 0.71±0.34 - NP 
0.18 0.01 0.85 0.66±0.14 0.63±0.09 0.61±0.11 0.57±0.12 - P Glucose 

(g/l) 0.66±0.11 0.66±0.18 0.61±0.10 0.59±0.13 - NP 
0.7461 <0.0001   

0.890 
1.46±0.32 1.45±0.37 1.29±0.29 1.01±0.21 - P Chol (g/l) 
1.60±0.41 1.49±0.37 1.39±0.33 1.05±0.36 - NP 

0.26 0.69 0.58 0.17±0.05 0.19±0.09 0.21±0.17 0.23±0.25 - P TG (g/l) 
0.19±0.07 0.18±0.08 0.18±0.07 0.19±0.18 - NP 

0.19 0.43 0.60 0.25±0.13 0.23±0.12 0.21±0.10 0.23±0.10 - P UREA 

(g/l) 0.27±0.13 0.24±0.11 0.28±0.13 0.22±0.08 - NP 



0.51 0.03 0.94 79.6±10.3 76.5±12.3 78.9±7.89 73.2±13.2 - P PT (g/l) 
77.8±9.31 77.1±11.6 77.5±9.43 74.3±10.7 - NP 

0.22 0.63 0.53 86.5±19.3 82.7±19.8 84.3±15.1 89.3±16.4 - P AST (UI) 
98.9±39.3 91.8±21.6 91.3±20.8 91.2±15.9 - NP 

0.14 <0.0001 0.11 36.1±14.5 33.8±13.2 30.9±13.2 27.1±8.79 - P ALT (UI) 
33.9±9.81 34.5±12.5 31.1±9.30 26.8±8.28 - NP 

0.96 0.28 0.76 20.7±6.35 19.5±4.39 18.3±5.03 19.5±8.81 - P γGT (UI) 
27.7±30.6 22.1±7.94 22.2±9.54 22.1±13.4 - NP 

0.82 0.56 0.82 84.9±12.1 83.7±15.2 83.9±10.9 81.9±12.6 - P Ca (mg/l) 
86.2±10.2 87.3±10.1 89.6±8.15 85.3±8.98 - NP 

0.14 0.65 0.42 54.1±11.9 49.8±13.9 53.3±11.1 55.7±13.5 - P P (mg/l) 
59.2±20.5 58.2±17.7 60.1±16.1 56.8±11.6 - NP 

0.95 <0.0001 0.48 17.3±3.26 17±3.57 18.2±3.21 17.1±3.38 - P Mg (mg/l) 
19.3±3.95 19.9±4.67 18.8±3.38 17.9±4.80 - NP 

0.39 0.99 0.94 138±6.58 133±9.10 135±7.90 138±9.58 - P Na (Meq/l) 
139±5.97 137±5.95 138±4.89 139±7.98 - NP 

0.16 0.99 0.67 4.31±0.48 4.36±0.77 4.25±0.55 4.19±0.44 - P K (Meq/l) 
4.52±0.51 4.50±0.70 4.50±0.44 4.45±0.45 - NP 

0.0005 0.99 0.24 2.35±0.29 2.32±0.25 2.41±0.20 2.56±0.24 2.82±0.25 P BCS 
2.09±0.23 2.14±0.23 2.29±0.25 2.56±0.27 2.92±0.36 NP 

* Significant difference was considered at the level of P < 0.05. 

  
Table 4. Final logistic regression model of the association between Parity, glucose, Triglycerides (TG), 

aspartate aminotransferase (AST), non-esterified fatty acid (NEFA), 3-β-hydroxybutyrate 

(BHBA), Phosphorus, BCS at calving (BCS-calv) and BCS loss (dBCS); and pregnancy at first 

insemination. 
Variable Estimate SE P-value OR 95% CI 

Week 2           
Parity 0.22    0.13     0.10 1.24   0.95-1.62 
BHBA (mmol/l) -0.43      0.13     0.001 0.65    0.50-0.84 
Week 4           
Parity 0.36 0.11      0.001 1.43 1.15-1.78 
BHBA (mmol/l) -0.28     -0.28   0.03 0.75   0.58-0.98 
NEFAs (mmol/l) -0.64     0.20    0.002 0.52      0.35- 0.78 
Glucose (g/l) -0.62    0.25     0.01 0.53    0.33-0.87 

AST (UI) -0.89    0.22     <0.0001 0.41     0.27-0.63 
Phosphorus (mg/l) -0.49      0.19      0.01 0.61    0.42-0.88 

BCS-calv 0.12     0.07 0.08 1.13   0.98-1.30 

dBCS -0.45      0.25  0.07 0.63 0.39-1.03 

  
Time to first insemination and to conception 

  
We analyzed the factors that affected the hazard of resumption of cyclicity by 12 weeks 

postpartum (Table 5). Only K and Mg concentrations in second week affected [the hazard 

ratio (HR) for K=0.45 and it was 1.22 for Mg], whereas calving season did not (P>0.05). 

Days to conception within 150 DIM affected SC, BHBA and Na plasma concentration of the 

4th week with a HR=0.22, 0.11 and 0.68 respectively, whereas parity did not (table 6). 
  

Table 5. Cox proportional hazards model for the effect of Season of calving, K and Mg on time from 

calving to first insemination. 

Variable Estimate SE P value HR 95% CI 

Season of calving -0.79      0.47      0.09     0.45 0.18-1.13 
K* (Meq/l) -0.80 0.31      0.01    0.45      0.24-0.83 
Mg* (mg/l) 0.19     0.06      0.001    1.22      1.08-1.37 

*Metabolites measured at wk2 
  



Table 6. Cox proportional hazards model for the effect of parity, Season of calving, BHBA and sodium on time to 

conception. 

Variable Estimate SE P value HR 95% CI 

Parity -2.01 1.24 0.10 0.13    0.01-1.54 
Season of calving -1.47 0.51 0.004 0.22 0.08-0.62 
BHBA* (mmol/l) -2.24 0.70 0.001 0.11     0.03-0.42 
Sodium* (Meq/l) -0.38 0.18 0.03 0.68    0.47-0.97 

*Metabolites measured at wk4 

Discussion 
  
This study evaluated the relationship between the concentrations of certain nutrient-sensitive 

blood metabolites and the resumption of ovarian cyclicity, pregnancy at first insemination, 

time to first insemination and to conception in postpartum Monbéliarde cows. The ROA 

seemed relatively higher in the present study (56%) than some earlier report (32.6%) from the 

same breed in France (Pires et al 2015).   However, overall mean P/AI at first insemination 

was 34%, much lower than reported by Barbat et al (2010) which was 54%. 
  
Negative associations between nutritional status in early lactation and subsequent 

reproductive performance have been reported in a number of previous studies (Beam et Butler 

1999; Boland and Lonergan 2003; Konigsson et al 2008). Metabolic profiles are frequently 

used to assess energy status and it influences, among other factors, dairy cow fertility (Wathes 

et al 2007). 
  
Contrary to comparable studies, the results of our study clearly demonstrate no relationship 

between post-partum metabolic profiles and the resumption of ovarian cyclicity. There was a 

relationship between post-partum metabolic profiles of BHBA, K and odds of pregnancy at 

the first AI. However, no significant differences were detected in the whole period 

(interaction with time) of observation in the circulating metabolites concentration between 

cows grouped according to their ovarian activity and pregnancy state. The effect of 

postpartum circulating metabolites concentration on P/1-AI, time to beginning of luteal 

activity has been described later in lactation with variable results (Canfield and Butler 1990; 

Taylor et al 2003; Shrestha et al 2005). Their effect depends an adaptational system to NEB 

(Butler 2000). Given the complexity of this adaptational system and the number of 

metabolites involved, it seems impossible to expect whether this metabolic adaptation is, at a 

certain point in time, successful or not (LeBlanc 2010). Furthermore, it is interesting to note 

that there is no interaction with time for NEFAs, because it was measured one time only (at 

30 DIM). Blood NEFA concentrations have been found to be a more accurate measure of 

NEB (Ospina et al 2010). 
  
Only BCS was affected by both ROA groups and P/1-AI groups x time interaction. However, 

there was not a relationship between post-partum BCS profile and P/1AI or ORA. Change in 

BCS highly correlates with cumulative negative energy balance (NEB) and reflects total 

energy deficit. The effect of NEB on reproductive performances in dairy cows is well known 

(Konigsson et al 2008). Both the duration and magnitude of negative energy balance are 

associated with reduced reproductive performance (Walsh et al 2007). Consequently, 

prolonged mobilisation of body reserves during early lactation can have significant 

deleterious effects on resumption of ovarian activity postpartum, conception rate and 

infertility (Domecq et al 1997; Boland and Lonergan 2003). The magnitude of BCS change 

may be a more important predictor of reproductive performance. 
  



Within individual weeks, as hypothesized, factors associated with OAR and P/1-AI included 

indicators of nutritional status, parity and season of calving. As expected, energetic metabolite 

had most effect on both ROA and P/1-AI. Ovarian resumption risk was not significantly 

affected by BHBA concentrations in wk 2 and by NEFAs concentrations in wk 4. However, 

there was a strong association between elevated circulating ketone concentrations in the 

fourth week postpartum and risk of pregnancy at first insemination. Furthermore, the 

probability of pregnancy after first AI decreased with increasing circulating BHBA 

concentrations in wk 2 and with increasing circulating BHBA and NEFAs concentrations in 

wk 4. Both elevated serum concentrations of NEFAs and BHBA have been identified as a 

priori risk of decreasing ROA (Dubuc et al 2012; Reberio et al 2013; Shin et al 2015) and P/1-

AI (Mcart et al 2012; Garverick et al 2013). 
  
Circulating concentrations of NEFAs and β-hydroxybutyrate (BHBA) measure aspects of the 

success of adaptation to negative energy balance (LeBlanc 2010), their elevated level may be 

indicative of decreased DMI and greater NEB (McArt et al 2013). Increased severity of 

negative energy balance and increased time to its nadir decreased the probability of ovulation 

and pregnancy (Colazo et al 2009). NEB acting through the combined metabolic signaling of 

low IGF-I, GH, insulin and glucose (Hammon et al 2009). Surprisingly, negative effect of 

plasma glucose concentrations on ROA and P/1-AI were unexpected, as glucose levels 

usually had a positive effect on ROA and P/1-AI (Garverick et al 2013; Shin et al 2015). This 

finding may be explained by the variation of glucose measurement in ruminant. 

Concentrations of plasma glucose can vary under the influence of numerous factors (Bowden 

1971). Diurnal variation, stress, sampling time post-feeding, diet composition, and intake can 

affect glucose concentrations in dairy cow (Herbein et al 1985). Their measurements are more 

accurate when insulin is measured. AST and ALT were used to assess liver function 

associated with hepatic lipidosis during postpartum (Bobe et al 2004). We found a negative 

relationship between AST, ALT and ORA and ALT at wk 4 and risk of pregnancy at first 

insemination. However, Samarütel et al (2008) reported that higher AST concentrations could 

be related to the delayed first ovulation. Similarly, passive effect of plasma TG, cholesterol 

concentrations on ROA were observed. Plasma cholesterol increased during early lactation in 

that study and was partly attributed to the hepatic re-esterification of NEFA as TG (Bjerre-

Harpøth et al 2012). The patterns of effect of cholesterol and triglyceride concentrations on 

fertility in dairy cows were reported in previous study (Guédon et al 1999). Likewise, total 

protein was associated with ovarian cycles postpartum in dairy cows according to previous 

study (Meikle et al 2004). Moreover, Shrestha et al (2005) didn’t found an evidence 

relationship. This may be explained by the typical mobilization of body fat and protein to 

meet the requirements for milk production and maintenance during early lactation (Goff and 

Horst 1997). These proteins have been converted to provide substrate for gluconeogenesis and 

the breakdown of triglycerides from adipose tissue and the provision of glycerol as a substrate 

for gluconeogenesis (Van Dorland et al 2009). 
  
It has been reported that reduced blood calcium concentration increases the incidence of 

postpartum reproductive disorders and fertility (Chapinal et al 2011; Reberio et al 2013) 

although decreasing phosphorus may affect ovarian activity (Jeong et al 2015), and 

conception rate (Costa et al 2015). Our results are not consistent with these findings and they 

rather agree with others that failed to detect positive relationship between postpartum blood 

calcium and ROA and   between postpartum blood calcium, phosphorus and P/1-AI. 
Contrary to our hypothesis, we found no relationship between BCS at calving and dBCSs 

concentrations around calving and the odds of pregnancy at the first AI which has been shown 

by other studies (Ospina et al 2010; Garverick et al 2013). Conversely, other studies show an 



association between BCS at calving BCS loss and pregnancy at first insemination (Roche et al 

2007; Chapinal et al 2012). 
  
It is known that time from calving to first insemination is a reflection of management practice 

regarding the voluntary waiting period and estrus detection efficiency (Walsh et al 2007). In 

our results, only blood magnesium concentrations at wk 2 was positively related to time from 

calving to first insemination, though, blood potassium had a negative association. This finding 

may be explained with DMI, because magnesium and potassium are not stored in the body. 

Jeong et al (2015) reported that a lower level of magnesium in ration may affect reproduction 

performance. Furthermore, previous study suggests that feeding high levels of K may delay 

the onset of puberty and ovulation, impair corpus luteum development and increase the 

incidence of anestrus in heifers (Smith and Chase 1985). Season of calving was not 

significantly associated with time from calving to first insemination. However, contrary to 

other report (Ospina et al 2010), season was significantly associated with time to conception. 

In other words, cows calved at worm season had 1.47 more time to become pregnant 

comparing with cows calved at cold season. Postpartum BHBA concentrations had a negative 

effect on time to conception, contrary to results found by Ospina et al (2010). Sodium is the 

most important extracellularly cation, it is indispensable for several functions in the organism. 

Though, in this study we found negative effect of postpartum sodium concentrations on time 

to conception. 
  

Conclusion 
 The present study demonstrated that the increased NEFA, BHBA, glucose, phosphorus 

and calcium concentrations, decreased cholesterol, AST, ALT, TG and protein total 

were associated with decreased ROA and P/1-AI. However, only increased BHBA 

(among energetic metabolites) was associated with increasing of time from calving to 

conception. Increased potassium and decreased magnesium were associated with 

increasing of time from calving to first insemination. These findings indicate that 

balanced nutrition and reproduction management should be emphasized to ameliorate 

reproductive performance. 
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