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Abstract—Timed-constrained and probabilistic verification
approaches gain a great importance in system behavior valida-
tion. They enable the evaluation of system behavior according
to the design requirements and ensure their correctness before
any implementation. In this paper, we propose a probabilistic
and timed verification framework of State Machine diagrams
extended with time and probability features. The approach
consists on mapping the extended State Machine diagram to
its equivalent probabilistic timed automata that is expressed in
PRISM language. To check the functional correctness of the
system under test, the properties are expressed in PCTL temporal
logic. We demonstrate the approach efficiency by analyzing
performability properties on a Automatic Teller Machine (ATM)
case study.

Keywords—State Machine Diagram, MARTE, Probabilistic
Timed Automata, Model Checking, PCTL.

I. INTRODUCTION

Constraints on system design in terms of functionality,
performance, availability, reliability and time to market are
becoming more stringent. Therefore, the design and imple-
mentation of successful systems, represent the prime concerns
of systems engineering (SE) but reveals several challenges[9].
Indeed, from one side the systems are becoming increasingly
complex, in the other side the market pressure for rapid
development of these systems makes the task of their designs a
challenge. Thus, the evaluation and the correctness of systems
at early stage of design reduce the design cost such as
maintenance time and effort. Recently, automated verification
techniques gain more popularity and especially to cope with
errors that can occur when the system is running. The quan-
titative approach using model checking gives more accurate
observations on systems that exhibit real time characteristics.,
as the avionic and automotive systems operating under timing
constrains. The UPPAAL model checker [4] seems to be
suitable to represent a timed automaton but more real time
systems exhibits a probabilistic behavior like system failure,
communication error that can be managed by probabilistic
model checking [3].

Model checking is an automated technique that, given a
finite-state model of a system and a formal property, automat-
ically checks whether this property holds or not for that model.
The model checking focuses on qualitative or quantitative
properties [3]. The qualitative properties assert that certain
event will happen surely or not. The quantitative properties are
based on the probability or expectation of certain events (e.g.

the probability of the system failure in the next 5 times units is
0.85). Probabilistic model checking is an effective technique to
probabilistically verify the satisfiability of a given property. In
our paper we use PRISM model checker [15] for probability
and time verification.

In System Engineering, System Modeling Language
(SysML) is a standard language [1] used for specification,
analysis, design and verification of a broad range of com-
plex systems (e.g. Hardware, software, information workflow).
SysML reuses a subset of UML2 artifacts (Unified Model-
ing Language) and provides additional extensions to specify
requirements such as probability. Behavioral specification is
achieved in SysML using three diagrams: State Machine,
Communication and Activity Diagram. State Machine diagram
is particularly studied in our paper.

The execution time of behavior in SysML depends gen-
erally on resource availability. This may result in a variation
of total time completion. Thus, if an state behavior terminates
within a bounded time interval then, a probability distribution
for terminating the state behavior can be established with
respect to the execution time interval. This paper proposes a
probabilistic and timed verification of SysML state machine
diagrams that are guarded with time constraints. We use
MARTE time annotation on the top of state machine nodes
that specifies the estimation of time duration of an action
(behavior) execution. Moreover, the time annotation are only
specified for states nodes in the form of time interval I=]min,
max[, where min, max are integer values. Time value min
represents the earliest value for execution completion of the
corresponding state’s behavior and time value max is the latest.
Furthermore, the state’s time duration can be omitted if the
execution time is negligible. The semantic interpretation of
state machine diagram is encoded into the input language of a
probabilistic symbolic model checker (PRISM) to produce the
satisfiability of the PCTL property on state machine diagram.
For the verification efficiency, the constructed models can
be either multi-terminal binary decision diagram (MTBDD),
sparse matrices, as well as a hybrid of these two. In addition,
PRISM supports the reward operator that can be used to
specify a wide range of measures of interest (e.g. The total
energy consumed by the system, the time that the system is
operational). A comprehensive comparative study of proba-
bilistic model checkers can be found in [18]. The kernel of
the framework is based on transforming the state machine
diagram to its equivalent Probabilistic Timed Automata (PTA)
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Figure 1: Verification framework for SysML state machine diagram

expressed in PRISM language. Finally, PRISM model checker
produces the satisfiability results of PCTL properties on the
mapped model. These properties depend on the functional
requirements and performance specifications of the system.
The proposed framework is depicted in Fig.1.

The remainder of this paper is structured as follows:
Section II discusses the related work. Section III and IV
describe and formalize SysML state machine diagrams and
PRISM model, respectively. Section V provides a mapping
mechanism of state machine diagrams into PRISM. Section VI
illustrates the application of our framework on a case study.
Section VII draws conclusions and lays out the future work.

II. RELATED WORK

In this section, we present the recent works related to the
verification of behavioral models then we compare them with
our proposed approach.

Doligalski and Adamski[6] propose a verification and sim-
ulation of UML State Machine. For this purpose, two mapping
mechanisms are defined. The first consists on mapping the
original model to Petri network for verification according the
requirements. When the requirements are satisfied, the second
mapping occurs to generate VHDL or Verilog description for
simulation. The data on each transition is considered as a
trigger for a new state but probability and time verification
are not considered. Huang et al.[11] propose a verification
of SysML State Machine Diagram by extending the model
with MARTE [17] to express the execution time. The tool
has as input the State Machine Diagram and as output Timed
automata expressed in UPPAAL syntax [4]. UPPAAL uses
CTL (Computational Tree Logic) properties to check if the
model is satisfied with liveness and safety properties. Ouchani
et al. [19] propose a verification framework of SysML activity
diagram. The authors address a subset of SysML activity
diagram artifacts with control flow. The different artifacts
have been formalized and a verification algorithm has been
proposed for mapping these artifacts to PRISM language.
The transformation result is a probabilistic automata to be

checked by PRISM. Timing verification is not considered in
this paper. Jarraya et al. [12] propose a probabilistic verifi-
cation of SysML activity diagram where the execution time
of actions are formalized as constraints (i.e. A note artifact
in SysML Activity diagram). The diagram is translated to
its corresponding DTMC and use PRISM model checker for
performance evaluation using PCTL. The approach is restricted
on a subset of SysML activity diagram constructs with control
flow (data flow is missing). Kaliappan et al. [13] propose
a verification approach for system work-flow especially in
communication protocol. The approach takes as input three
UML diagrams: state machine diagram, activity diagram and
sequence diagram. state machine diagram or activity diagram
is converted into PROMELA code as a protocol model and
its properties are derived from the sequence diagram as Linear
Temporal Logic (LTL). Lasnier et al. [16] develop a framework
for automatic generation of embedded real time applications in
C/C++/ADA. The input is AADL language (Architecture Anal-
ysis and design Language) with typed software components
(e.g. threads, data) and hardware components (e.g. processor,
bus, memory). In addition, the design model is enriched with
time execution properties (e.g. computation time, priority,
deadline and scheduling algorithms) . For timing estimation
and optimization, a scheduling tool is used based on software
components timing constraints. After time optimization, the
framework generates C/C++/ADA code that can be simulated.
Pajic et al.[20] develop a framework for verification and
generation of real time applications either in C/C++code for
software or in Hardware description language (HDL) like
VHDL or Verilog. The focus of the work is a development
of model translation tool UPPAAL[4] to Stateflow (UPP2SF).
The checked UPPAAL model is translated to Stateflow using
Simulink which provides full support for C/C++, VHDL and
Verilog code generation for simulation purpose.Ando et al. [2]
propose a verification approach of SysML state machine dia-
gram. The diagrams are translated to communication sequential
process description (CSP) and they apply the PAT[21] model
checker to check the CSP models against the LTL properties.
The paper proposes a mapping rules of different state machine
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artifacts. However, time and probability are not addressed in
the paper. Knorreck et al. [14] develop a framework for timing
verification of real time system specification incorporating a
combined UML, SysML diagrams and customized profile.
Each block diagram and its state machines are converted to a
corresponding automata in UPPAAL syntax. The properties are
derived from parametric diagram as Computational Tree Logic
(CTL). Elmansouri et al. [7] propose a mapping approach of
UML activity diagram to CSP by using a graph transformation
called ATOM tool. For this purpose, the authors propose a
meta-model for activity diagram and graph grammars that
performs automatically the transformation of activity diagram.
Probability and time are not addressed in this paper.

Compared to the existing few works, our contribution
improves the verification of SysML State Machine diagram
by extending State Machine with elements of UML MARTE
profile to support time and probability. In addition, we use
PRISM model checker to verify the satisfiability of different
performance requirements expressed in PCTL properties.

III. STATE MACHINE DIAGRAM

SysML State Machine diagram is a graph-based diagram
where states nodes are connected by edges(transition)[8]. Fig-
ure 2 shows the set of interesting artifacts used for verification
in our framework. The behavior of a state machine is specified
by a set of regions, each of which defines its own set of states.
The states in region are exclusive; that is, when the region is
active, exactly one of its substates is active. A region starts
executing when it initial pseudostate becomes active. When
a state is activated, an (optional) entry behavior is executed.
Similarly on exit, an optional exit behavior is executed. While
in a state, a state machine can execute a do behavior (Activity,
State machine, Interaction, Opaque Behavior). A region also
has a final pseudostate that, when active, signifies that the
region has completed. Change of state is effected by transitions
that connect a source state to a target state. Transitions are
defined by triggers, guards, and effects. The trigger indicates
an event that can cause a transition from the source state, the
guard is evaluated in order to test whether the transition is
valid, and the effect is a behavior executed once the transition
is triggered. Triggers may be based on a variety of events
such as the expiration of a timer, or the receipt of a signal. In
addition to initial and final pseudostate, control nodes supports
a junction, choice, join, fork, terminate and history pseudostate
node. A junction nodes are used to chain together multiple
transitions. A single junction can have one or more incoming,
and one or more outgoing transitions, a guard can be applied to
each transition. A junction which splits an incoming transition
into multiple outgoing transitions realizes a static conditional
branch, as opposed to a choice pseudo-state which realizes a
dynamic conditional branch. Initially, when a state machine
diagram is invoked, its initial node is activated. Then, the
activation of any other node (states or pseudostates) depends
only on the deactivation of its predecessor node and the guard
satisfaction of its input edge.

A. Probability and Time Expression using the elements of
SysML/MARTE

In this sub section, we try to depict the existing ways to
express the time in SysML state machine diagram. MARTE is

Figure 2: A subset of State machine diagram artifacts

a UML profile standardized by OMG [17] aims to replace the
UML profile SPT (Profile for Schedulability, Performance and
Time). MARTE was defined to make quantitative predictions
regarding real-time and embedded features of systems taking
into account both hardware and software characteristics. The
core concepts are design and analysis parts. The design parts
are used to model real time embedded systems. On the
other hand, the analysis parts provide facilities to support the
resources analysis such as probability, execution time, energy
and memory usage. In our paper, we use probability and execu-
tion time for quantitative verification. Figure 3 illustrates how
the probability value is specified on the outgoing edges of the
choice nodes testing their corresponding guards. In addition,
the transition leaving choice nodes are annotated with the
<< GaStep >> stereotype, specifying the probability (prob)
of traversing one of the conditional branches. The time is
specified by applying the stereotype << resourceUsage >>
with element execTime to specify the maximum and the
minimum value of the time duration written as (value, unit,
max). The state ”TurnOn” requires exactly 2 units of time
to terminate; State ”AutoFocus” terminates within the interval
]1,2[. The state ”TakePicture” execution time is negligible.
To model probabilistic systems, the probabilities are assigned
to edges emanating from decision nodes where the assigned
values should sum up to 1. For instance, the choice node testing
the guard ”memFull”has the following semantic interpretation:
the probability is equal to 0.2 that the outcome of the choice
node will be (memFull=true) and the corresponding edge
traversed.

IV. PRISM MODEL CHECKER

In this section, our formalization focus on probabilistic
timed automata (PTA) that extends the standard probabilistic
automata (PA) considered as appropriate semantic model for
SysML Activity Diagram [19]. The PRISM model checker
supports the PTA with the ability to model real-time behavior
by adding real-valued clocks (i.e. clocks variable) which
increases with time and can be reset (i.e. updated).

A Timed Probabilistic System (TPS) that represents a
PRISM program (P) is composed of a set of ”m” modules
(m > 0). The state of each module is defined by the evaluation
of its local variables VL. The global state of the system is
defined as the evaluation of local and global variables: V=VL
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Figure 3: Digital camera state machine diagrams [12]

∪ VG. The behavior of each module is described as a set of
statements in the form of: [act]guard → p1 : u1.. + pn : un
Where act is an (optional)action labeling the command, the
guard is a predicate consists of boolean, integer and clock
variables and propositional logic operators , p is a probability.
The update u is a set of evaluated variables expressed as
conjunction of assignments (V ′j = valj)&..&(V ′k = valk)
where Vj ∈ VL U VG and valj are values evaluated via
expressions denoted by ”eval” eval: V→ R U {True, False}.
The formal definition of a command is given in Definition 1.
Definition 1

A PRISM command is a tuple c = < a, g, u >.

• ”act” is an action label.

• ”guard” is a predicate over V.

• ”u” = {(pi, ui)} ∃m > 1, i < m, 0 < pi <
1,
∑m

i pi = 1 and u = {(v, eval(v)) : v ∈ Vl}.

The set of commands are associated with modules that are
parts of a system and it definition is given in Definition 2.

Definition 2

A PRISM module is tuple M = < Vl, Il, Inv, C>, where:

• Vl is a set of local variable associated with a module,

• Inv is a time constraint of the form vl on d\ on∈
{≤,≥} and d ∈ N,

• Il is the initial value of Vl.

• C= {ci, 0 < i ≤ k}is a set of commands that define
the module behavior.

To describe the composition between different modules,
PRISM uses CSP communication sequential process operators
[10] such as Synchronization, Interleaving, Parallel Interface,
Hiding and Renaming. Definition 3 provides a formal defini-
tion of PRISM system.
Definition 3

A PRISM system is tuple P = <V, Ig , exp, M, CSPexp>,
where:
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• V = Vg
∐m

(i=1) Vli is the union of a set local and global
variables.

• Ig is initial values of global variables.

• exp is a set of global logic operators.

• M is a set of modules composing a System.

• CSPexp is CSP algebraic expression.

The structure of our temporal logic supported by PRISM
model checker is expressed by the following BNF grammar:

A. Property specification for PTAs

The syntax of our logic is given by the following grammar:

ϕ :: =true | ap |ϕ ∧ ϕ |¬ϕ | P./p[ψ] | R./q[ρ],

ψ :: = ϕ ∪≤k ϕ | ϕ ∪ ϕ ,

ρ :: = I=k | C≤k | F ϕ

Where ”ap” is an atomic proposition, P is a probabilistic
operator and R is a reward. Operator P./p[ψ] means that the
probability of path formula ψ being true always satisfies the
bound on p, p ∈ [0, 1]. Two paths formulas are included bound
until ϕ1∪ϕ2 and time-bound until ϕ1∪≤k ϕ2 . Bound until
means that a state satisfying ϕ2 is eventually reached and that,
at every time-instant prior to that, ϕ1 is satisfied. The time-
bounded variant has the same meaning, where the occurrence
of ϕ2 occur within time k. R./q[ρ] means that the expected
value of reward function ρ meets the bound ./ q, q ∈ Q. ”on”∈
<,≤, >,≥. ”∧” represents the conjunction operator and ”¬ ”
is the negation operator. The reward operator I=k refers to the
reward of the current state at time instant k, C≤k refers to the
total reward accumulated up until time point k, and F ϕ to the
total reward accumulated until a state satisfying ϕ is reached,
e.g:

- Rtime
max=?[F TurnOff] : what is the maximum expected

time to take a picture and turn off ?.

V. MAPPING STATE MACHINE DIAGRAMS INTO PRISM

In this section, we propose the translations rules of state
machine diagram artifacts to their equivalent PRISM com-
mands.

A. Start State Machine

Figure 4: Start State Machine

A non composite states (Fig.4, Listing.1) are represented
by a Boolean variable set to false except the initial state. The
clock variable is reset to 0 when the triggered state contains a
time interval.

1 start : bool init true;
2 TurnOn :bool init false;
3 login : [0..5] init 0;
4 .........................
5 [start] start→(initializing’=true)&(start’=false);
6 [initializing] initializing →(login’=0);
7 [do] initializing & login=0 →(login’=login+1);
8 [exit]initializing & login>0 →(login’=login-1)
9 &(initializing’=false);

Listing 1: Start State Machine

B. Setting the Invariant (maximum execution time)

Figure 5: Time invariant

For each non composite state (Fig.5, Listing.2) having
an execution time interval, we generate its specific clocks
variable. The maximum value of the generated clock is set
within invariant clause to impose the different values of clock
variable.

1 invariant (TurnOn=true ⇒ x ≤2) endinvariant

Listing 2: State Invariant

C. State transition

Figure 6: State transition

The transition has the form: trigger[guard]/behavior (Fig.6,
Listing.3), the trigger specifies events that may induce state
transition, the guard is a transition condition and behavior may
be a data update. In the case when the trigger is time event
either that a given time interval has passed since the current
state was entered (after), or that a given instant of time has been
reached (at) the resulting command guard that corresponds to
the minimal time transition. We support data update in our
paper as a resulting behavior.

D. Junction pseudostate

The junction pseudostate (Fig.7, Listing.4) splits an incom-
ing transition into multiple outgoing transitions according the
static conditional branch. A junction pseudostate is like an
initial pseudostate, as a filled circle.
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1 [loggedOn] loggedOn & loggedIn=1 → (loggedOff’=true)
2 &( loggedOn’=false)&( loggedIn’= loggedIn-1);
3 [loggedOff] loggedOff → (loggedOn =true)
4 &( loggedOff’=false)&( loggedIn’= loggedIn+1);

Listing 3: State transition

Figure 7: Junction pseudostate

1 [N1] N1 → (Junction11’=true)&( N1’=false);
2 [N2] N2 → (Junction12’=true)&( N2’=false);
3 [Junction11] Junction11 & (g1=true) →
4 (N3’=true)&( Junction11’=false);
5 [Junction12] Junction12 & (g2=true) →
6 (N4’=true)&( Junction12’=false);

Listing 4: Junction pseudostate

Figure 8: Choice pseudostate

1 [N1] N1 → (choice’=true)&(N1’=false);
2 [choice] choice → p1: (lg1’=true)&( choice’=false)
3 + p2: (lg2’=true)&( choice’=false);
4 [lg1] lg1 & g1→ (lg1’=false)&( N2’=true);
5 [lg2] lg2 & g2→ (lg2’=false)&( N3’=true);

Listing 5: Choice pseudostate

E. Choice pseudostate

A choice node (Fig.8, Listing.5) has multiple incoming
transitions and outgoing transitions. The output flow is typ-
ically established by placing mutually exclusive guards on
all outgoing flows and offering the token to the flow whose
guard expression is satisfied. We add probability feature at the
outgoing edge. Each token can only traverse one edge, with
the specified probability.

Figure 9: Fork pseudostate

F. Fork pseudostate

A fork node (Fig.9, Listing.6) has a single incoming
transition and many outgoing transitions. When an incoming
transition is taken to the fork pseudostate, all of the outgoing
transitions are taken.

1 [fork] fork → (N1’= true)&(N2’= true)&(fork’= false);

Listing 6: Fork pseudostate

G. Join pseudostate

Figure 10: Join pseudostate

The join node (Fig.10, Listing.7) represents a special case,
it has to wait for a locus of control on each incoming edge in
order to be traversed. we are obliged to decompose the join
node in a set of nodes to realize a synchronization.

1 [join1] N1 → (join1’= true)&(N1’= false) ;
2 [join2] N2 → (join2’= true)&(N2’= false) ;
3 [join] join1 & join2 → (join’= true)&(join2’= false)
4 &(join1’= false);

Listing 7: Join pseudostate

H. Terminate pseudostate

Figure 11: Terminate pseudostate

1 [Terminate] N → (N’= false) ;

Listing 8: Terminate pseudostate

If a terminate pseudostate (Fig.11, Listing.8) is reached,
then the behavior of the state machine terminates. The minimal
clock value indicates the condition that enables the transition.
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I. Final State

Figure 12: Final State

The final state (Fig.12, Listing.9) indicates that a region
has completed execution and all existing states variables will
be set to false.

1 [End] N → (N’= false) & ...... & (Ni’= false);

Listing 9: Final State

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In the following, we present a case study [5] related to a
SysML based design describing an automated teller machine
(ATM). We perform the verification of this design with re-
spect to predefined properties. Listing.10 is the corresponding
generated code.

The ATM interacts with a potential customer (user) via
a specific interface and communicates with the bank over an
appropriate communication link. A user that requests a service
from the ATM has to insert an ATM card and enter a personal
identification number (PIN). Both pieces of information (the
card number and the PIN) need to be sent to the bank for
validation. If the credentials of the customer are not valid,
the card will be ejected. Otherwise, the customer will be able
to carry out one or more transactions (e.g., cash advance or
bill payment). The card will be retained in the ATM machine
during the customers interaction until the customer wishes for
no further service. Fig.13 shows the SysML state machine
diagram of the ATM system.

ATM state machine encloses four substates: IDLE, Veri-
fication, Eject, and Operation. The IDLE state, wherein the
system waits for a potential ATM user, is the default initial
substate of the top state. The Verification state represents the
verification of the cards validness and authorization. Verifiy-
Card and VerifyPin substates have interval time ]3s,5s[,]4s,5s[
respectively (s for seconds). The probability to get pin and card
validated is 0.7 and 0.8, respectively. The Eject state depicts the
phase of termination of the users transaction. The Operation
state is a composite state that includes the states that capture
several functions related to banking operations. These are the
Selectaccount, Payment, and Transaction.

When the state Selectaccount is active, and the user selects
an account, the next transition is enabled and the state Payment
is entered. The Payment state has two substates, respectively,
for cash advancing and bill payment. It represents a two-item
menu. Finally, the Transaction state captures the transaction
phase and includes three substates: CheckBal for checking the
balance, Modify for modifying the amount, if necessary, and
Debit for debiting the account.

Each one of the Payment and Transaction states contains a
shallow history pseudostate. If a transition targeting a shallow

Figure 14: Property1

history pseudostate is fired, the most recently active substate
in the composite state containing the history connector is
activated.

In order to check the correctness of the ATM system,
we propose to verify two functional requirements. They are
expressed in PCTL as follows:

1. The maximum probability value to get the card and
pin validated after k time units.

Pmax =?[F≤k(CardV ALID & PinV ALID )] (1)

2. The maximum probability value that the modification
occurs during the Bill Payment after k=5 time units.

Pmax =?[F≤k(BillPAY & Modify))] (2)

The maximum probability value for the modification occurs
during the Bill payment is equal to 0.3 when k equal to 5 (time
units). The verification results of the first property are shown
in Fig 14. After 4 time units (seconds), the verification results
converge to 0.3 .

1 pta
2 module ATM
3 start : bool init true;IDLE :bool init false;
4 Join11 :bool init false;Join12 :bool init false;
5 Join1 :bool init false;
6 M11 :bool init false;M12 :bool init false;
7 M13 :bool init false;M1 :bool init false;
8 Eject :bool init false;Final : bool init false;
9 [start] start -> (start’=false)&(IDLE’=true);

10 [IDLE] IDLE-> (IDLE’=false)& (Fork’=true);
11 [Fork] Fork-> (Fork’=false);
12 [exit11] (Join11=false =>true) ->(Join11’=true);
13 [exit12] (M11=false =>true) ->(M11’=true);
14 [exit21] (Join12=false =>true) ->(Join12’=true);
15 [exit22] (M12=false =>true) ->(M12’=true);
16 [join] Join11 & Join12 ->(Join1’=true) & (Join11’=false)
17 & (Join12’=false);
18 [M11] M11 -> (Eject’=true);
19 [M12] M12 -> (Eject’=true);
20 [M13] M13 -> (Eject’=true);
21 [fin] (Eject=false =>true) -> (Eject’=true);
22 [final] Eject -> (Eject’=false) & (IDLE’=false)
23 &(Join11’=false)&(M11’=false) &(Join12’=false)&
24 (M12’=false)&(Join1’=false) ;
25 [Join1] Join1 -> (Join1’=false);
26 endmodule
27

28 module CheckCard
29 start2 : bool init false;VerifyCard : bool init false;
30 C1 : bool init false;CardOK : bool init false;
31 NotCardOK : bool init false;CardVALID : bool init false;
32 CardNOTVALID : bool init false; x1: clock;
33

34 invariant (VerifyCard=true =>x1<=5) endinvariant
35 [Fork] (VerifyCard=false =>true)- (VerifyCard’=true);
36 [VerifyCard] VerifyCard & x1>= 3-> (VerifyCard’=false)
37 &(C1’=true);
38 [C1] C1 -> 0.6:(C1’=false)& (CardOK’=true)
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Figure 13: ATM state machine diagram

39 +0.4:(C1’=false)& (NotCardOK’=true);
40 [CardOK]CardOK-> (CardOK’=false) & (CardVALID’=true);
41 [NotCardOK]NotCardOK-> (NotCardOK’=false)
42 & (CardNOTVALID’=true);
43 [exit11] CardVALID ->(CardVALID’=false);
44 [exit12] CardNOTVALID ->(CardNOTVALID’=false);
45 endmodule
46

47 module CheckPin
48 start3 : bool init false;VerifyPIN : bool init false;
49 C2 : bool init false;PinOK : bool init false;
50 NotPinOK : bool init false;PinVALID : bool init false;
51 PinNOTVALID : bool init false; x2: clock;
52

53 invariant (VerifyPIN=true =>x2<=5) endinvariant
54 [Fork](VerifyPIN=false =>true)->(VerifyPIN’=true);
55 [VerifyPin]VerifyPIN & x2 >=4->(VerifyPIN’=false)&(C2’=true);
56 [C2] C2 -> 0.5:(C2’=false)& (PinOK’=true)+
57 0.5:(C2’=false)& (NotPinOK’=true);
58 [PinOK]PinOK-> (PinOK’=false) & (PinVALID’=true);
59 [NotPinOK]NotPinOK-> (NotPinOK’=false)&(PinNOTVALID’=true);
60 [exit21] PinVALID ->(PinVALID’=false);
61 [exit22] PinNOTVALID ->(PinNOTVALID’=false);
62 endmodule
63

64 module Operation
65 start4 : bool init false;SelectAccount: bool init false;
66 History1: bool init false;History2: bool init false;
67 fin :bool init false;
68 [Join1] (start4=false =>true) -> (start4’=true);
69 [start4] start4 -> (start4’=false)& (SelectAccount’=true);
70 [SelectAccount] SelectAccount -> (SelectAccount’=false);
71 [BillPAY] (fin=false =>true) -> (fin’=true) ;
72 [BillPAY] (History1=false =>true) -> (History1’=true);
73 [History1] History1 -> (History1’=false);
74 [Debit] (History2=false =>true)-> (History2’=true);
75 [History2] History2 -> (History2’=false);
76 [fin] fin -> (fin’=false);
77 endmodule
78

79 module Transaction
80 start6 : bool init false;Modify : bool init false;
81 CheckBal : bool init false;Debit : bool init false;
82 M21 : bool init false;M22 : bool init false;
83 [History1] (start6=false =>true) | start6 ->

84 (start6’=(Modify |CheckBal|Debit)?false:true);
85 [start6] start6 -> (M21’=true)& (start6’=false);
86 [M21] M21-> (CheckBal’=true) & (M21’=false);
87 [M22] M22-> (CheckBal’=true) & (M22’=false);
88 [CheckBal] CheckBal-> (Modify’=true) & (Debit’=true)
89 & (CheckBal’=false);
90 [Modify] Modify -> (M22’=true)&(Modify’=false);
91 [Debit] Debit -> (Debit’=false);
92 endmodule
93

94 module Payment
95 start5 : bool init false;CashADV : bool init false;
96 BillPAY : bool init false;
97 [History2] (start5=false =>true) | start5 ->
98 (start5’=(CashADV |BillPAY)?false:true);
99 [SelectAccount] (start5=false =>true)-> (start5’=true);

100 [start5] start5 -> (start5’=false) &(CashADV’=true);
101 [CashADV] CashADV -> (CashADV’=false) &(BillPAY’=true);
102 [BillPAY] BillPAY -> (BillPAY’=false) ;
103 endmodule

Listing 10: The general code for ATM state machine diagram

VII. CONCLUSION

In this paper, we presented a formal verification approach
of systems behavior modeled by using state machine diagram.
The state machine diagrams are transformed to PRISM input
language. For this purpose, We proposed the translation rules
to generate the PRISM code proper to state machine diagram.
In addition, we have shown the effectiveness of our approach
by applying it on a case study representing an ATM state
machine diagram where time and probability are evaluated
using PCTL properties. The presented work can be extended
in the following three directions. First, we intend to extend
our approach to support more behavioral diagrams such as se-
quence diagram. Second, we want to transform our behavioral
diagram to its equivalent HDL (hardware description language)
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code for RTL verification. Finally, we want to validate our
approach on different case studies and real system models.
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