
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/290816854

A Model Driven Approach to Derive e-Learning Applications in Software Product

Line

Conference Paper · November 2015

DOI: 10.1145/2816839.2816850

CITATIONS

3
READS

156

2 authors:

Some of the authors of this publication are also working on these related projects:

Conciliation de l'approche à composants et l'approche à services View project

Software Product Line View project

Lahiani Nesrine

Saad Dahlab University

8 PUBLICATIONS 7 CITATIONS

SEE PROFILE

Djamal Bennouar

Bouira University, Algeria

38 PUBLICATIONS 73 CITATIONS

SEE PROFILE

All content following this page was uploaded by Lahiani Nesrine on 17 January 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/290816854_A_Model_Driven_Approach_to_Derive_e-Learning_Applications_in_Software_Product_Line?enrichId=rgreq-6e67f6a634446fac74fb84d3b47fe0e6-XXX&enrichSource=Y292ZXJQYWdlOzI5MDgxNjg1NDtBUzozMTg5NTkzNDQxMjgwMDBAMTQ1MzA1NzI0MTE4MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/290816854_A_Model_Driven_Approach_to_Derive_e-Learning_Applications_in_Software_Product_Line?enrichId=rgreq-6e67f6a634446fac74fb84d3b47fe0e6-XXX&enrichSource=Y292ZXJQYWdlOzI5MDgxNjg1NDtBUzozMTg5NTkzNDQxMjgwMDBAMTQ1MzA1NzI0MTE4MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Conciliation-de-lapproche-a-composants-et-lapproche-a-services?enrichId=rgreq-6e67f6a634446fac74fb84d3b47fe0e6-XXX&enrichSource=Y292ZXJQYWdlOzI5MDgxNjg1NDtBUzozMTg5NTkzNDQxMjgwMDBAMTQ1MzA1NzI0MTE4MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Software-Product-Line-2?enrichId=rgreq-6e67f6a634446fac74fb84d3b47fe0e6-XXX&enrichSource=Y292ZXJQYWdlOzI5MDgxNjg1NDtBUzozMTg5NTkzNDQxMjgwMDBAMTQ1MzA1NzI0MTE4MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-6e67f6a634446fac74fb84d3b47fe0e6-XXX&enrichSource=Y292ZXJQYWdlOzI5MDgxNjg1NDtBUzozMTg5NTkzNDQxMjgwMDBAMTQ1MzA1NzI0MTE4MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lahiani_Nesrine?enrichId=rgreq-6e67f6a634446fac74fb84d3b47fe0e6-XXX&enrichSource=Y292ZXJQYWdlOzI5MDgxNjg1NDtBUzozMTg5NTkzNDQxMjgwMDBAMTQ1MzA1NzI0MTE4MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lahiani_Nesrine?enrichId=rgreq-6e67f6a634446fac74fb84d3b47fe0e6-XXX&enrichSource=Y292ZXJQYWdlOzI5MDgxNjg1NDtBUzozMTg5NTkzNDQxMjgwMDBAMTQ1MzA1NzI0MTE4MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Saad_Dahlab_University?enrichId=rgreq-6e67f6a634446fac74fb84d3b47fe0e6-XXX&enrichSource=Y292ZXJQYWdlOzI5MDgxNjg1NDtBUzozMTg5NTkzNDQxMjgwMDBAMTQ1MzA1NzI0MTE4MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lahiani_Nesrine?enrichId=rgreq-6e67f6a634446fac74fb84d3b47fe0e6-XXX&enrichSource=Y292ZXJQYWdlOzI5MDgxNjg1NDtBUzozMTg5NTkzNDQxMjgwMDBAMTQ1MzA1NzI0MTE4MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Djamal_Bennouar3?enrichId=rgreq-6e67f6a634446fac74fb84d3b47fe0e6-XXX&enrichSource=Y292ZXJQYWdlOzI5MDgxNjg1NDtBUzozMTg5NTkzNDQxMjgwMDBAMTQ1MzA1NzI0MTE4MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Djamal_Bennouar3?enrichId=rgreq-6e67f6a634446fac74fb84d3b47fe0e6-XXX&enrichSource=Y292ZXJQYWdlOzI5MDgxNjg1NDtBUzozMTg5NTkzNDQxMjgwMDBAMTQ1MzA1NzI0MTE4MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Djamal_Bennouar3?enrichId=rgreq-6e67f6a634446fac74fb84d3b47fe0e6-XXX&enrichSource=Y292ZXJQYWdlOzI5MDgxNjg1NDtBUzozMTg5NTkzNDQxMjgwMDBAMTQ1MzA1NzI0MTE4MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lahiani_Nesrine?enrichId=rgreq-6e67f6a634446fac74fb84d3b47fe0e6-XXX&enrichSource=Y292ZXJQYWdlOzI5MDgxNjg1NDtBUzozMTg5NTkzNDQxMjgwMDBAMTQ1MzA1NzI0MTE4MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

A Model Driven Approach to Derive e-Learning
Applications in Software Product Line

Nesrine LAHIANI
Department of Computer Science

Saad Dahlab University
Blida, Algeria

lahiani.nesrine@gmail.com

Djamal BENNOUAR
Department of Computer Science
Akli Mohand OulHadj University

Bouira, Algeria
dbennouar@gmail.com

ABSTRACT

Platforms such as Moodle aims to ease and improve the teaching-
learning process by means of taking advantage of internet
technologies. All existing e-learning platforms are pretty similar
the concepts of activity, assignment, deliverable or grade. But also
a wide range of differences among them exists. Software Product
Line (SPL) has as goal the effective production of similar software
systems. .Product derivation represents a fundamental aspect in
SPL. It is also the main challenge that SPL faces. Despite its
importance, there is only a little research on product derivation
compared to the large work on developing product lines. In
addition, the few available research reports guidance about how to
derive a product from a product line. In this paper we describe a
combination of SPL and MDA which both fit perfectly together in
order to build applications in cost effective way. We proposed an
approach for product derivation that adopts MDA with its
organized layers of models to achieve SPL goals.

Categories and Subject Descriptors

D.2.13 [SOFTWARE ENGINEERING]: Reusable Software –
Domain engineering, Reuse models.

General Terms

Design, Experimentation.

Keywords Software Product Line, Product Derivation, Model
Driven Architecture, e-learning.

1. INTRODUCTION
A software product line (SPL) is as a set of software-intensive
systems that share a common, managed set of features satisfying

the specific needs of a particular market segment or mission and
that are developed from a common set of core assets in a
prescribed way [1]. A feature [2] is a system property or
functionality that is relevant to some stakeholder and is used to
capture commonalities or discriminate among systems in SPLs.

The SPL approach makes a distinction between domain
engineering where a product is derived based on the platform
components and application engineering where individual products
using the platform artefacts are constructed [6]. The process of
creating these individual products from a product line of software
assets is known as product derivation [4].

Derivation of a product from an SPL seems to be an easy step
since it’s relied on reuse. Actually the derivation activity
represents one of the main challenges that SPL faces. A number of
publications reported clearly the difficulties associated with this
activity.

As an example, Deelstra and al. reported in [4] the following
assertion: “Contrary to popular belief, deriving individual products
from shared software assets is a time-consuming and expensive
activity”.

Product derivation has been defined in many different ways. In [4]
Deelstra, Sinnema, and Bosch define product derivation by, “A
product is said to be derived from a product family if it is
developed using shared product family artifacts. The term product
derivation therefore refers to the complete process of constructing
a product from product family software assets” and also by
“Product derivation is a key activity in application engineering. It
addresses the construction of a concrete product from the product
line core assets”.

Model Driven Architecture (MDA) [7] defines three layer of
software model specification: the CIM layer, the PIM layer and the
PSM layer. In the context of MDA, a software system is produced
after series of model transformation which starts from the CIM
layer model. The CIM model is transformed to a PIM model. This
later is finally transformed in a PIM model.

The work presented in this paper deal with an SPL derivation
process based on MDA concepts. The main idea is to represent
each steps of Application engineering in SPL with a model of
MDA starting from requirement engineering until the product
implementation. Indeed, there are needs for decisions model and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
IPAC '15, November 23-25, 2015, Batna, Algeria
© 2015 ACM. ISBN 978-1-4503-3458-7/15/11…$15.00
DOI: http://dx.doi.org/10.1145/2816839.2816850

transformations rules to get at the end a running application that
satisfy customer's wishes.

The remainder of the paper is structured as follows: we first
outline related work (Section 2). We then describe how we
combine application engineering and MDA (Section 3), the
process of our product derivation approach (Section 4). We finish
with case study (Section 5) and finally, conclusions and futures
directions are presented (Section 6).

2. RELATED WORK
In [12] Kim and al. proposed an overview of a complete method
called Dream stands for DRamatically Effective Application
development Methodology, which integrates both SPL engineering
and model-driven architecture. DREAM, that adopts the key
activities of SPL and model transformation feature of MDA. The
process consists of 9 phases, and each phase was specified with
work instructions utilizing UML and representation scheme
utilizing PIM and PSM of MDA. However, there is little support
for the derivation process other than a high level description of the
activities required. A similar approach has been proposed by
Haugen et al. [10] who present a conceptual model for SPL
engineering aligned with MDA and serves as the basis for both
modeling and product derivation. To derive a product the process
is as follows: first, the “product model” is expressed using
Computation Independent Model (CIM), which is the same
formalism as the product-line model is defined (modeled in terms
of UML 2.0 use cases). Then, a model transformation taking both
product and product line models as parameters transform the core
assets so that the resulting model, “Product/System Model”,
correspond to the PIM model of the product (modeled in terms of
UML 2.0 composite structures). Finally product implementation is
obtained after several refinements at the Product Specific Model or
PSM level.

FIDJI is a flexible product derivation process [5], part of an overall
model-driven SPL based development methodology [11]. The
FIDJI process consists in writing a model transformation, using a
set of predefined transformation operations that will reuse core
assets’ models to build the product. This transformation is written
by the product engineer and checked against instantiation
constraints. Hence, the FIDJI PD process offers the flexibility
required to support product-specific requirements by supporting
them via transformation operations while controlling their
realization through instantiation constraints.

Ziadi et al. [13] modeled Core assets in terms of UML. Class
diagrams are used to represent the static part and sequence
diagrams to represent the behavioral part. The decision model
which is a set of requirements and engineering decisions that an
application engineer must resolve in order to describe and
construct a product and determine the extent of variation that is
possible among the systems of the domain was defined by Ziadi et
al. as a class diagram (as shown in figure 1) which exposes
variants as stereotyped elements. Product derivation is formalized
by using a UML model transformation. An algorithm is given to
derive a static model for a product and an algebraic approach is
proposed to derive product-specific statecharts from the sequence
diagrams of the product line. Based on product engineer’s choices,
relevant classes are selected and a model transformation removes
unused variants as well as optimizes the model.

 Figure1. The Abstract Factory as a decision model for the
Mercure SPL

3. INTEGRATE MDA AND SPL
Application engineering is the second process of SPL which
comprises: (1) Application requirement engineering identifies the
specific requirements for an individual product. Then, (2)
Application Design derives an instance of the feature model, which
conforms to the requirements identified in the previous step. In
parallel product-specific requirement are captured and also
modeled. (3) Application designed detailed focus on refining the
design model, by considering platform specific characteristics such
as programming language, middleware and component platform.
Finally, (4) Application Realisation develops the final product by
using the design detailed model.

The main idea is to represent all the 4 phases of application
engineering by MDA model as shown in Figure 2. The
requirements for the system are modeled in a computation
independent model, CIM describing the situation in which the
system will be used [7]. After that, application design is
transformed in a platform independent model, a PIM, is built. It
describes the system, but does not show details of its use of its
platform [7]. Then integrate both models into one PIM model.
Application detailed design is modeled in PSM the platform
specific model produced by the transformation is a model of the
same system specified by the PIM; it also specifies how that
system makes use of the chosen platform [7]. Finally, the PSM
obtained contained all the information necessary to produce
computer program code.

Application
Requirements
Engineering

Application
 Realisation

Application
Design

Application
Detailed
Design

Computational
Independant
Model

Platform
Independant
Model

Platform
Specific
Model

Code

Figure2. Combination of MDA and SPL

4. DERIVATION PROCESS
The product derivation process consists of six activities: (1)
engineers starts with feature model for pre-configuration to select
feature relevant to customer’s wishes. (2) Users defined in the
feature instance model perform the actual configuration by taking
decisions visible to them. (3) In parallel, they capture product-
specific requirements in aim to do a specific-asset implementation.
(4) Product integration uses generic and specific model to obtain
at the end one single model. (5) Product development uses the
final model to develop an executable application. (6) Finally,
Product testing passes a test to the final application. Eventually,
newly captured product-specific requirements are added to the
product line. Figure 3 depicts the activities of our product
derivation approach.

4.1 Pre-Configuration
Initially step1 uses feature models [8] as input to select the feature
relevant for customer’s requirements to build the product and
identify the specific-assets of the product. Once the selection is
checked and validated by the engineer the output at this stage is a
specialized version of feature model (instance) based on [3]. In
parallel we represent this instance in MDA with CIM with UML to
represent the model but it can be represented in any form as long
as the semantics of this model is well preserved.

4.2 Configuration
In this step we start with a reference configuration as input which
is a partial configuration designed as basis for the development of
the new product that includes all parameters setting. Reselecting or
mapping of customer features according to the final instance of
feature model. After that, we use the decision model as input to
take decision and customize assets throw answering questions, our
decisions model is based on [9]. Based on this taken decisions a

configuration is generated which is also the output of this phase.
The representation in MDA at this stage could be represented as
PIM (Platform Independent Model).

4.3 Specific-Asset Implementation
After capturing and identifying customer's specific requirements
others decision must be taken for these specific-assets. As input we
used the output of the previous phase that contains taken and open
decisions in order to complete those opens decisions. Based on
decisions and information about their relationship with the
available assets, if it's possible we just modify an already existing
asset to adapt the new customer's wishes, else we develop
completely a new asset from the scratch. This new developed
assets must be tested individually to make sure that they work
before integration. These newly developed/modified assets are the
output of this phase. The representation in MDA will be also a
PIM specific model to facilitate integration in a later phase.

4.4 Product Integration
In this step, we should integrate the two separated PIM specific-
asset model and PIM generic model into one single PIM model in
order to facilitate implementation and derivate one single coherent
product that satisfy customer's requirements. After that, we use
this final PIM to transform it into a PSM (Platform Specific
Model) that contain all details about the final application such as
component platform, a specific programming language…etc. The
process of mapping PIM to PSM is automated by using a set of
predefined transformation rules. The output at this stage is PSM
model that represent all detailed design and includes platform
decisions. Product Development

4.5 Product Development
Based on what we obtained from the previous phase (PSM model),
we use it as an input to produce an executable application code.

SPL MDA

4.6 Product Testing
After the product development, which is finished when we
obtained the application code, this final product must pass a test
before delivering to the customer. Testing means that if the
integration works properly and the final product satisfies all
customers' requirements, then the product is validated by the
engineer. If the customer validation is failed we must repeat all the
previous activities until the customer is satisfied.

 Figure3. Product derivation process

5. CASE STUDY
In this section we exemplify our approach on a simplified “e-
Learning application” used in educational institutions. The
application aim to ease and improve the teaching-learning process
by means of taking advantage of internet technologies.

Figure 4 shows a part of the feature model we constructed for e-
Learning. This feature model specifies that the e- Learning
application has four main features: (1) the Human Machine
Interface that can supply (HMI); (2) the kind of courses that can
the platform provided (Courses); (3) the collaboration tool it uses
(Collaboration tool); and (4) Connexion BD.

The HMI could contain or not Theme which is an optional feature
but must contain only one of three different languages (FR, EN,
and AR) since these features are mutually exclusive alternatives.
Two mandatory features must be used (1) lesson which users can
read the content of the lesson online (Online reading) or simply
download it. (2) Evaluation the second mandatory feature of
courses could be done by two different kind of Exercise (Online
Test or Work).So, if we select work which is an optional feature
only one of the two features must be selected (Individual or and
AR) since these features are mutually exclusive alternatives. Two
mandatory features must be used (1) lesson which users can read
the content of the lesson online (Online reading) or simply
download it. (2) Evaluation the second mandatory feature of
courses could be done by two different kind of Exercise (Online
Test or Work).So, if we select work which is an optional feature
only one of the two features must be selected (Individual or
Group).

The last mandatory feature is about connexion to the data base so
only one feature is allowed to be selected (MYSQL or SQL
Server).

In order to evaluate the described approach, we performed the case
study of “e-Learning application” following the organization
proposed in section 4 in aim to create MDA models shown
previously in Figure 2 (CIM, PIM, PSM and Code)

Pre-Configuration require a feature model which exposes in a
concise way features and their variants supported by SPL’s core
assets. We use the feature model in figure 4 in aim to select the
variants related to the customer’s requirements. Then, once the
selection is checked we create an instance of the feature model
based on [3] which can be represented in MDA as CIM. The pre-
configuration step ends when the combination of the selected
features is validated. After that, the configuration phase used the
output of the pre-configuration phase, during this steps decisions
must be taken by the engineer. Based on this taken decisions a
configuration is generated and could be represented in MDA as
PIM.

Figure4. Feature Model for e-Learning application

Decision model rely on describing the decisions that need to be
made to derive a specific product from the product line. Decisions
are typically represented in form of questions with a defined set of
possible answers. Decision-based variability models are often
represented in tables containing decisions, their attributes, and
dependencies. Products are derived from a decision model by

setting values to the decisions through answering questions and
following the sequence defined by the decisions’ dependencies.
Our product derivation process is also based on decisions Figure 5
shows a decision model for the e- Learning application in a
tabulation notation.

Name Relevance Question Range Cardinality Constraints

Online test Which type of exercise
do you want to be able to
use in your platform?

Text, MCQ,
Diagram

1-3

Collaboration tool Which collaboration tool
you want your platform
has?

Forum,
Chat, Email

1-3

Scoring Exercise=>yes Do you want to be able
to score student’s
evaluation?

Yes,no 1 Scoring=>Exercice

Figure5. Example decision model based on [9].

In parallel, specific-requirements are captured to be designed and
integrated later. The model design of specific-requirements is
represented as a PIM model. Application specific PIM is identical
to the generic PIM except the content of PIM is only relevant to a
specific application.

 After implementing two separate models (generic and specific)
product integration phase integrates those two models into one
single model which will still be a conventional PIM. Next, the
obtained model after integration is detailed in order to map PIM to

PSM that contain specific characteristics such as programming
language, middleware and component platform. Finally, product
realisation takes PSM to produce an executable application. Our
derivation process is implemented based on EMF Ecore plugin of
the Eclipse open development platform available at
http://eclipse.org/modeling/emf/

6. CONCLUSION
In this paper we have proposed a product derivation process
using MDA approach. MDA with its organized layers of models
achieving the SPL goals with more benefits and the generative
natures of MDA makes it a useful approach to derive product
for SPL .MDA consists in the separation of platform dependent
and platform independent models, which distinct between
business (CIM), applications (PIM), and technology (PSM). The
main idea is to represent each phase of the application
engineering (application requirement engineering, application
design, application detailed design, and application realisation)
by MDA models. The derivation process proposed consists of
six activities, each activities output was represented by MDA.
We also illustrated each step of the process with an e-Learning
application.

 As future work, we will add more features and also intend to
build a set of components to this e-learning application.

At the tool level, improvements may concern the visual
representation of feature models (via the Ecore reflexive editor
provided by Eclipse). A possibility is to develop our metamodel
and generate this later using tool such as GMF
(http://www.eclipse.org/gmf/)

7. REFERENCES
[1] Clements,P., Northrop,L. Software Product Lines: Practices and

Patterns. The SEI series in software engineering. Addison-Wesley,
Boston, 2002.

[2] Czarnecki, K., Helsen, S.: “Feature-Based Survey of Model
Transformation Approaches”, IBM Systems Journal, 45, 3, 621-64,
2006.

[3] Czarnecki, K., Helsen, S., Eisenecker, U.: “Staged Configuration
Using Feature Models”. In Proceedings of the 3rd Software
Product-Line Conference (SPLC’04), September 2004.

[4] Deelstra, S., M. Sinnema, and J. Bosch, Product Derivation in
Software Product Families: A Case Study. Journal of Systems and
Software, 2005. 74(2): p. 173-194.

[5] Guelfi, N. and Perrouin, G., A Flexible Requirements Analysis
Approach for Software Product Lines, I Requirements
Engineering: Foundation for Software Quality. 2007, Springer
Berlin / Heidelberg. p. 78-92.

[6] Hotz, L., A. Gunter, and T. Krebs, A Knowledge-based Product
Derivation Process and some Ideas how to Integrate Product
Development, in Proc. of Software Variability Management
Workshop. 2003: Groningen, The Netherlands.

[7] J. Mukerji, and J. Miller, "MDA Guide," 2003.

[8] Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: “Feature-
oriented domain analysis (FODA) feasibility study”, Technical
Report CMU/SEI-90-TR-021, SEI, Pittsburgh, PA, November
1990.

[9] K. Schmid and I. John. A Customizable Approach to Full-Life
Cycle Variability Management. Journal of the Science of
Computer Programming, Special Issue on Variability Management,
53(3), pp. 259-284. 2004.

[10] Ø.Haugen, B. Møller-Pedersen, J. Oldevik, and A. Solberg. An
MDA-based Framework for Model-Driven Product Derivation. In
SEA, pages 709–714. ACTA Press, 2004.

[11] Perrouin, G., Klein, J., Guelfi, N., and Jezequel, J.M. Reconciling
Automation and Flexibility in Product Derivation. in 12th
International Software Product Line Conference (SPLC). 2008.

[12] S. D. Kim, H. G. Min, J. S. Her, and S. H. Chang. DREAM: A
Practical Product Line Engineering Using Model Driven
Architecture. In Information Technology and Applications.
(ICITA), pages 70–75, Washington, DC, USA, 2005.

[13] T. Ziadi and J.-M. J´ez´equel. Product Line Engineering with the
UML: Deriving Products. In Families Research Book. Springer, 2006.

View publication statsView publication stats

https://www.researchgate.net/publication/290816854

