
 1

THE DESIGN OF A COMPLEX SOFTWARE SYSTEM
USING A SOFTWARE ARCHITECTURE APPROACH

Djamal BENNOUAR
Saad Dahlab University

09000 Blida, Algeria
dbennouar@gmail.com

Abberrezak Henni
INI, Oued Smar

16000, Algiers, Algeria
henni@ini.dz

Abdelfettah saadi
CDTA,Baba Hassen,

16000, Algiers, Algeria
asaadi@cdta.dz

Abstract: Software development using software
architecture approaches and aspect oriented
programming represents today a very promising way for
the design of high quality software at lower costs. The
Integrated Approach to Software Architecture (IASA) is
an Aspect Oriented Software Architecture Approach
using a component model totally independent from any
software mechanism, mainly the interface concept. The
IASA component model provides facilities not supported
by nowadays software architecture tools to easily specify
any topology an architect can imagine. It is used here to
show how it is easy to design at a high level of
abstraction, an EGovernment application using an
Aspect Oriented approach.
Keywords: Software Architecture, Component, Port,
Connector, Aspect, E-government.

1 INTRODUCTION

A number of research works were conducted during
the last decade concerning software architecture
specification. These efforts resulted in the proposal of a
great number of ADL. The work presented in [1]
summarizes the characteristics of these ADL and
discusses the main concepts of Software Architecture
such as components, ports, composite component or
configuration and connectors. Until now, proposed ADL
have not known the awaited success. This is due to
several factors, such as

- The orientations to solve problems in a specific
domain[2]

- The orientation to deal with a particular
architectural style [3]

- The exclusive use of formal languages like
CSP[4] which are not suited for practitioners.

- The difficulty to design GUI based application.
- The component interaction model is usually

based on the interface concept which heavily
constrains the specification of architecture to a
restricted set of well known topologies fully
influenced by the software mechanism, mainly
the procedure call mechanism.

The IASA approach [5],[6] was introduced to fill
most of these deficiencies. It offers an attractive
alternative for the practitioners allowing them to specify
architecture with a high degree of freedom from any
software mechanism constrain. In addition, IASA support
natively Aspect Oriented Software Architecture (AOSA)

specification which reinforces one step further the
modularity of a software system.

In this paper we deal with the design of an
EGovernment application using the IASA AOSA. Java
web technology represents in this experience the targeted
implementation technology.

In the remaining of this paper, we will briefly present,
in section 2, the fundamental concepts of Aspect
Oriented Programming (AOP) and AOSA. Section 3
deals with IASA fundamental model element and with
joinpoint specification technique. A joinpoint is one of
the basic elements of AOP. In section 4 we introduce the
global objectives of the EGovernment project we realized
using the IASA elaboration process. This later is
presented in section 5 and section 6 partially shows its
application in order to produce the EGovernment
software product. Section 7 briefly presents the
transformation technique used to generate the application
in the targeted implementation technology and section 8
concludes this work by outlining some challenges facing
the IASA approach in the design of Multi tiered
application based on HTTP servers.

2 ASPECT ORIENTED PROGRAMMING

Aspect-Oriented Programming (AOP) is a recent
software programming paradigm that aims at providing a
better separation of concerns and reinforces one step
further the modularity of a software system specification.
Aspect Oriented Software Architecture (AOSA) is a
recent trend in Software Architecture [7],[8,]. The most
interesting works in Component Based Software
Architecture deals with aspect either at a level of
abstraction directly related to implementation level
[9],[10],[11], or use an existing component model
[12],[13] which is usually extended by the definition of
specific interfaces, connectors and components.

AOP and AOSA are based on the following five
concepts[14]: joinpoint, pointcut, advice, weaver and
advice insertion mode. An advice represents the logic of
a specific concern. The joinpoint indicates the location in
the core business concern where the code must be altered
by injecting the advice to produce the final system. The
injection is achieved through a special mechanism called
the weaver. The pointcut, specified usually as a regular
expression, is a set of joinpoint where the advice has to
be weaved. The advice insertion mode specifies how to
operate the advice at a pointcut level. The most cited
advice insertion modes are: before (the advice is

 2

performed before the joinpoint), after (the advice is
performed after the joinpoint), and around.

The advice code corresponding to the around
insertion mode, contains a first part that must be executed
before the joinpoint and second part that must be
executed after the joinpoint. The execution of a service
with an around insertion mode is usually achieved as
follows:

- The advice before part is executed.
- An optional call to a special instruction usually

named proceed is made. This later launch the
execution of the service attached to the joinpoint
(a piece of code in programming language such
as AspectJ[14].

- The advice after part is executed.
- The program execution is resumed just after the

joinpoint.
The call to proceed may depend on the result of the

advice before part logic. If proceed is not called, the
joinpoint service is not executed, and the program
execution resumes just after the joinpoint.

3 THE IASA BASIC MODEL ELEMENTS

IASA is based on the following concepts: access
point, port, component, envelope, connector and action
[6]. These elements represent the fundamental concepts
of the IASA ADL called SEAL (Simple and Extensible
Action, Architecture and Aspect Language)[18]. The
action concept, largely inspired from the OMG Precise
Action Semantic[15]), is used to describe miscellaneous
architecture behaviors.

3.1 The IASA component Model

The IASA component model defines a specific
organization for the internal view |8] which consists of
two parts: the operative part and the control part. The
operative part handles the core business aspect. The
control part is composed of a controller and number of
aspect components (i.e. tracing, exception, transaction)
providing the technical advices [16]. An aspect
components is instantiated in the whole application as a
singleton.

3.2 The Envelope Concept

The main goal of the envelope is to provide a total
isolation of the internal view of a component from the
external world. The envelope is mandatory in the process
of instantiating a component type. The envelope
represents a sort of clothes an instance of a component
type wears in a specific situation. The envelope specifies
for a component instance its deployment case which
describes the deployment environment (machine,
operating system, process, application server) and the
exact nature of the component in such environment
(PROCESS, MAIN THREAD, THREADS, SERVLET,
EJB etc.).

An envelope hosts all the resources needed to
support communication aspect (i.e. adapters), to enable
the specification of connections involving the port's

structural elements and to handle aspects weaving
operations of code.
3.2.1 IASA Link Component

The link component (LinkCmp) is used to represent
the same component instance across the composition
hierarchy of an application, in order to produce lucid and
clear architecture specification and to avoid proliferation
of delegation connector. The LinkCmp provides more
than the concept of shared component of FRACTAL[17].
The LinkCmp provides means to attach to a same
component instance, different personalized external view,
in the same or in different level of the composition
hierarchy. The personalization of LinkCmp is mainly
achieved by using the alias construct of the SEAL
language either to personalize the action name describing
the port behavior [18] or to associate an action to a
specific aspect insertion mode (before, after,
around)[16].

3.3 The Access Point Concept

An access point is the smallest structural
element in the specification of an application [6]. It is
used to define the ports of components. An access point
exposes required or provided resources which may be
data or operations. Communication mode and the
resource time validity are among the properties of an
access point. An access point may be wired in an
independent manner to another access point which is
hosted in the same or a different port (Figure 1).This is
not the case in current software architecture models and
tools, where an interaction point, usually represented by
an interface is considered as an atomic element despite its
complexity.

The access points are organized into two categories
(Figure 2): The Data Oriented Access Point (DOAP) and
the Action Oriented Access Point (ACTOAP). An
ACTOAP plays one of two basic roles: a server role or a
client role. It supports a set of actions indicating the
provided or required operation. A DOAP is usually
provided with two specific actions: the send and receive
actions.

Fig. 1: IASA Connectors based on port's element

Access point
(i.e. method name,

parameters)
port

(i.e.Interface)

:A

:B

:D

:C

Full connector Primitive connectors

Fig. 2: Graphic notation of Access Point and ports

DOAP and ACTOAP (Notation used to show port’s detail)

 DOAP out DOAP in ServerPoint ClientPoint

 PORTS: Notations appearing on the boundary of a component

 ServerPort ClientPort Advice port

 3

3.4 Ports
A port is a regrouping technique of related access

points. It maintains an abstract and a concrete views. The
abstract view is represented by the concept of access
point, the actions associated with the access point and a
behavior. The port's behavior is represented by a set of
valid rules defined in the SEAL language. Each rule
shows how the required or provided resource must be
used. Figure 3 shows a SEAL partial description of port
types used in the external view of the CivilStateCmp
component type shown in Figure 10.

IASA defines a number of specific ports. Among
them (Figure 2) we find the ClientPort, the ServerPort
and the AdvicePort. An AdvicePort is a ServerPort
provided with actions explicitly associated with
supported aspect activation mode. For now, the
supported advice activation modes are:
aroundFirstAction, AroundLastAction, proceeedAction,
beforeAction and afterAction.

3.5 IASA Connectors

The IASA connector model is largely inspired from
computer network architecture. The model provides a
behavioral view and a structural view. The behavioral
view describes an interaction and the structural view
defines the infrastructure needed to transport the

interaction. The connector infrastructure is based on two
kind of fundamental connector elements:
- Transport Connectors which are point to point

connectors composed by Basic Transport
Connector, which can connect only two compatible
access points (Figure 1).

- Service connectors which are primitive component
oriented to support specific interconnection
functionality (distribution, multiplexing, load charge
balancing, etc.) as described in [19] and [20].
The designer is not concerned by the definition of

new Service Connectors or Transport connectors which
are predefined in the IASA approach and have a
complete realization in the supported implementation
technologies. The definition of the interconnection
infrastructure is achieved in IASA by cascading Service
Connectors using Transport Connectors.

3.6 Pointcut specification

In IASA, a joinpoint is localized only at port level
[16]. It may be any action attached to an access point. A
joinpoint is identified by a hierarchical name specifying
its location in a design. The star character symbols, and
SEAL keywords (i.e. (serverport, clientport, dataport,
interest, rule, send, receive) may be used to specify
joinpoints generic name in the process of a pointcut
definition. Operation on set (i.e. union, difference) may
also be used to define new pointcuts from others.

4 THE TAGETED APPLICATION

In this experimental study, we realized for the CDTA
(Center for the Development of Advanced Technologies
at Baba Hassen,Algiers) a software system which enables
the citizen to access through the internet to various
services of a local government institution called the APC
(the town council). The most required services from the
APC are the production of official documents exposing
important events such as the birth certificate and the
marriage certificate. Inside the APC, the service
delivering such official documents is called the Civil
State Service

The EGovernment system for the APC must provide
efficient solutions to the following challenges:
- A huge amount of data describing citizen events has

to be captured.
- A high degree of security must be guaranteed to

access critical part of the system and personal data
The first challenge was solved by defining a strategy

where the citizen is indirectly involved in the process of
entering data. The main benefit of this strategy is the fact
that a citizen natively makes best efforts to guarantee the
correctness of data describing him or any of his relatives.
In addition, with this strategy, the citizen participates
efficiently to highly reduce the problem of errors
produced when delivering documents. This first
challenge was solved as a part of the core business aspect
of the system.

The second challenge was solved by the use of a
predefined aspect component belonging to the security
aspect of IASA.

// SEAL ADL: file :CivilStatePortType.seal
package eapc.ports;
import eapc.doap.*;
// Action context definition
actioncontext citizen_basic_actions {

 // all actions of this context are abstract
 actions birth , death, marriage,
 divorce, family;
 }

 }
port { // Port type definition
 port DocumentPort {
 accesspoint{
 ServerPoint docSp (0, SYNC);
 CitizenIdDataPoint citizenId (OUT, 0, SYNC)
 }
 actioncontext {

 uses citizen_basic_actions;
}
behavior {
 rules birth_r, death_r, marriage_r,
 divorce_r, family_r;
 rule birth_r {

 precondition:;
 pattern: birth;success;
 postcondition:;
 fail:;

 }
 rule death_r { // empty section may be omitted
 pattern: death;success;
 }
 rule marriage_r {..}
 rule family_r {..}
 rule divorce_r {..}
}// end of port type behavior

 } // end of DocumentPort type definition
 // other port type definition
}// end of global port type definition

Fig. 3: Port Type specification with SEAL

 4

5 THE IASA ELABORATION PROCESS
The IASA elaboration phase in the design process of

a software system is completely automated in the context
of IASA STUDIO (Figure 4). The elaboration process
follows a recursive top down strategy made of a two
great phases: An initialization phase and a recursive
phase.

The initialization phase is concerned by definition of

the external view of the whole application and the
determination of external component. The recursive
phase deals with the design of component’s internal view
and its first step target the whole application internal
view. In the next section we present a partial view of this
process. A complete description may be found in [5]
5.1 Phase 1: Project Initialization phase
5.1.1 Step 1

This step starts with the specification of the
application name (AN) and the deployment architecture
(DA). Regarding IASA, the application itself is
considered as a component type.

5.1.2 Step 2: External view definition

The goal of this step is to define the provided and
required services, the definition of actions, the
organization of service inside ports and the specification
of port’s behavior. The following tasks are performed in
an iterative way.
Global informal description: This phase begin with an
abstract definition of the system or component, in the
form of only one box from where leave and arrive several
arrows. Arrows represent the provided and needed
services, data or controls. To eliminate any ambiguities,
the boxes and arrow specification must be accompanied
by a narration explaining the total functionalities of the
system and the semantic associated with the arrows. The
narration may also contain the requirements and
constraints fixed by the customer.
Resource organization: This task represents the first
task towards formalizing the external view. From the
preceding definition, we must define the provided and
required resources (services and data). The definition of

services is accomplished by specifying action names and
optionally action input and output pins.
Definition of the external ports: The required and
provided resources are gathered in ports according to the
supported port type (regular port, controlled port etc.).
The behavior of a port is then defined based on the
actions defined previously.

At the end of this phase, a full SEAL description of
the external view is produced by IASA STUDIO and
ready to be transformed in the chosen implementation
technology.

5.1.3 Step3:

Let LCmp a set of component and deployment
architecture initialized as follows: LCmp = {(AN, DA)}

5.2 Phase 2

This is the recursive phase of the elaboration
process. For each pair (ANX, DAX) from LCmp , the
following steps have to be performed.

Step 1: Internal view elaboration

This step is concerned by the elaboration of ANX
internal view and the definition of the controller
behavior. This step is realized as follow:

Let ILCmp an intermediate set of components and
deployment architecture pair initialized to empty. While
the internal view of ANX is not stable (the stability
analysis is done using the SEAL interpreter) perform the
following design action
- Find the component type needed to realize ANX.
- Define the external view for new component type
- Establish / modify / Remove connectors
- Define interaction using SEAL actions
- Define a mapping between external view and

internal view (delegation connectors)
- Define / Adjust the behavior of the controller.
- Verify the component’s stability using the SEAL

interpreter
- Adjust the external view of new component type
- Specify the deployment case for the used instance

according to initial deployment architecture DAX
- Add new introduced component type to ILCmp set.
Step 2: End of internal view elaboration of ANX the
ANX component is stable
Step 3: Prepare the next recursion

Add new component types to LCmp:
LCmp = LCmp + ILCmp.

Step 4: End of the design elaboration process.

6 THE DESIGN OF THE APPLICATION

In the following we partially show the use of the just
introduced elaboration process in the design of the
previously described application.

6.1 Phase 1: Project Initialization phase
6.1.1 Identification and deployment architecture

The targeted application is named E_APC. The
deployment architecture is represented by the Apache
Tomcat HTTP server.

Fig. 4 : CivilStateCmp in IASASTUDIO

 5

6.1.2 The external view
Global description of the system: Figure 5 presents a
global view of the system which serves as a base for the
first formal specification using IASA notation (Figure 6).

Resources organization in the external view: The
preceding informal view is transformed into a more
precise view (Figure 6) which would be the starting point
for a successive operation of refinement until reaching
the desired software product. Figure 6 shows all the
ports of the system using the IASA notation and figure 7
present a partial view of the E_APC in the SEAL
language.

The interesting observation on the formal
specification of the E-APC, according to IASA approach
notation (Figure 6), is the lack of ports dealing with
access control. This situation is in fact due to the support
of aspect oriented software architecture in the IASA
approach. In fact, technical aspects have not to be
considered when designing the core business aspect. This
later has to be designed for an ideal environment which
provides necessary technical support to safely operate the
core business aspect and decides where and when to
place the support.
6.2 Phase 2: internal view LCmp elements

Figure 8 shows some fundamental components of
the E_APC internal view. The operative part is composed
of six business components and the main view of the
E_APC IHM. The control part contains two aspect
components in addition to the controller.

6.2.1 Managing the security aspect

The operative part is designed without taking any
care concerning security and logging aspects. If at this
stage any service has to be secured, the only thing
designer has to do is to connect the advice port of the
security component to the port providing the service to
secure. This operation, called aspect injection, is
achieved by specifying the pointcut containing the
actions concerned by the security advice. Figure 9 shows
how the security aspect is injected in all ServerPort of all
business component except those component which do
not need to be secured.

.

pStarter pLog

:SysAdminCmp

:CitizenRelationC
mp

:APCMeetingCmp

:CivilStateCmp

:ClassifiedCmp

:SysInstallCm

APCOPCtrl :SecurityACmp :LogACmp

pSql
:SQLClientPort

Figure 8: partial Internal View of E_APC

pAuthAdvice pLogAdvice

:M
ainV

iew

pInstall

pDoc

pAdmin

pDdec

pAPCMeeting

pOpinion

pClassified

pDocVal
pDdecVal

plocalDoc

Figure 6: E_APC external view using IASA notation

pStarter: MainCmpPort

pInstall : InstallPort

pSql
:SQLClientPort

:E_APC
pDoc :DocumentPort

pLog
: IALogDataPort

pAdmin : AdminPort
B S P

pDec :DeclarationPort
B S P

pAPCMeeting :APCMeetingP

pOpinion :OpinionPollPort
B S PpClassified :ClassifiedPort
B S P

pDocVal :DocumentValPort

pDecVal :DeclarationValPort
S

pLocalDoc :LocalDocPort
B S P

// SEAL ADL: file : E_APC.seal
package eapc.component;
import IASA.aspect.*;
import eapc.ports;
component E_APC{
 ports { // The external view
 // required Services

SQLClientPort pSql;
 // Provided services

MainCmpPort pStarter;
InstallPort pInstall ;
AdminPort pAdmin ;

 // … other regular ports here
 ClassifiedPort pClassified;
 // Interest for an Aspect (IA) DOAP
 IALogDataPort pLog;
 }
 operativepart {
 components { ……….. } connectors { ………... }
 }
 controlpart {…… }
 }
} //End Description of E_APC component

Fig. 7: Partial SEAL description of E_APC

:E_APC

Requirements Provisions

Fig 5: Informal specification of E_APC

Database
connection

Local document

classifier

ReqDoc

OnLine APC meeting

Declaration
DeclarationValidation

Access Authentication

System Administration

Installation

Opinion poll
Offline APC deliberation

Anonymous Access

ReqDocValidation

 6

The completion of this step results in the complete
definition of the external view of new instantiated
components type which are added to the LCmp set.

This step is repeated for each new introduced
component type. In the following we will focus our
interest in the design of the CivilStateCmp, which is the
most important component in the E_APC application.

6.2.2 The internal view of CivilStateCmp component
It is composed of a number of components, each

one oriented to handle a specific functionality of the civil
state department of the APC (figure 10).

The components DeclarationCmp and DocReqCmp
are oriented to enable the participation of the citizen in
the process of populating the E_APC databases with
accurate data concerning them. DeclarationCmp handles
the declaration of new events such as birth, death,
marriage or divorce. DocReqCmp is used to request
miscellaneous certificates and, in the same time, is used
to enter citizen data if these later were not yet captured in
a previous declaration or document request.

The validation components (DeclValCmp and
DocReqValCmp) are used to validate data entered by
citizen either with DeclarationCmp or DocReqCmp. The
DocReportCmp is used to produce the desired certificate.
We notice in this internal view the use of link component
to represent the security and log aspect component
previously instantiated in the E_APC internal view.

We also notice that there is no need to secure the
access for DeclarationCmp and DocReqCmp since these
components are oriented to encourage citizen to enter

their data and participate in the whole process of
capturing citizen miscellaneous information. However,
in the previous step we have injected the security aspect
at all server port, which means that all actions at those
ports are targeted by the security advice. Consequently,
the server ports (spBirth, spMariage etc..) of
DeclarationCmp and DocReqCmp find themselves
secured. To solve this sort of problem we have two
solutions:
- Review the injection statement in the internal view

of E_APC.
Adjust the security aspect injection of a previous

step using the aspect remove capability of the SEAL
language (Figure 11).

7 GENERATING THE APPLICATION

The final form of the generated application code
depends on the application’s deployment map (Figure 12)
which specifies the deployment case for each component
instance of the tree representing the composition
hierarchy of an application.

Fig. 10 : CivilStateCmp partial internal view

spReqDoc

spDdec

:DocReqCmp

:DeclarationCmp

:DocReqValCmp

:DeclValCmp

spReqDocVal

spDdecVal

CSOPCtrl :SecurityACmp :LogACmp

pAuthAdvice

docRep
:DocReportCmp

spGetDoc

pLogAdvice

:C
ivilStateView

birth :Action

mariage :Action

cpBirth spBirth

cpSql
spMariage

birth :Action

// SEAL ADL: file :CivilStateCmp.seal
package eapc.component;
import IASA.aspect.*, eapc.ports.*;
component CivilStateCmp {

 aspect { // Aspect pointcut and advices management
 pointcuts {
 not_secured = { DeclarationCmp, DocRequestCmp };
 // other pointcut definition …….
 }
 advices {// Advices management // Adjust security injection
 remove secCmp. pAuthAdvice from not_secured;

// other advices management …
 }
……

Fig.11: Adjusting security aspect injection

// SEAL ADL: file : E_APC.seal
package eapc.components;
import IASA.aspect.*;
import IASA.ports.*;
component E_APC{
 ports {}
 operativepart {
 components { ……….. }
 connectors { ………... }
 }
controlpart {
 components {
 APCOPCtrl apcOPController;
 SecurityACmp secCmp;
 LogACmp logCmp;
 }
 aspect { // Aspect pointcut and advices management
 pointcuts {
 all_services={ serverport}
 not_secured = { CitizenRelationCmp, APCMeetingCmp,
 ClassifiedCmp};
 partial_secure = all_services – not_secured
 // other pointcut definition …….
 }
 advices {// Advices Management
 inject secCmp. p.AuthAdvice around partial_secure;

// other advices management operation …
 }
 interest {// Interest for Aspect Management
 }
 }
} //End Description of E_APC component

Fig. 9: security pointcut definition and injection

 7

A set of transformation rules takes a SEAL
description and produce the code in the desired
implementation technology. In the following we briefly
present the main transformation rules used in the process
of generating the E_APC application.
- An aspect component is always deployed as an

ordinary java class (or a java bean) provided with a
number of static methods. Each static method is
designed to handle a specific action belonging to the
supported aspect activation mode.

- Since the application belongs to the EGovernment
domain, any browser communication bypassing the
HTTP protocol is not supported (i.e. Java RMI).
Hence, it is not possible to deploy a component as an
APPLET if this component is provided with port
using a non HTTP communication protocol.

- For component deployed as JSP, Applet or
JavaScript, there is no need for connector adapter
since all used connectors and ports are based on
standard protocol (HTTP, SQL).

- Due to the stateless nature of the HTTP protocol, the
the aroundLastAction of the around activation mode
is only executed if the advised joinpoint is not
executed.

- The weaving of aspects is always located in the
client port connected to the targeted server port
containing the joinpoint. It is achieved at the
envelope level and results in the modification of the
port behavior.

The examples in figures 3,9,10,11, and the

following figures briefly outlines some elements of the
transformation process. Figure 3 shows the original
port’s behavior designed far from technical aspect. This
port’s behavior is attached to the server port (spBirth) of
DocReportCmp and the corresponding client port
(cpBirth) of CivilStateView (Figure 10). Usually we
encounter compatible behavior in the connected client
and server ports.

Figure 13 shows the behavior of the client port after
the injection of the security aspect as specified in figure 9
and 11.

Figure 14 illustrate the technique used in IASA
approach for a component to contact the external world.
The service call represented by a link in the
CivilStateView deployed as a JSP page, is first directed to
the component’s port (cpBirth) and not directly to
another component.

To insure the total isolation of a component type
from any instantiating environment, the service call is
redirected to the envelope used to instantiate the
component type (Figure 15). All modifications needed
by aspect weaving are located in the envelope. Figure 16
shows the connector implementation code represented by
a redirection of the service call from the envelope to the
envelope of connected server port (spBirth).

 birth certificate

Fig.14: inside the CivilStateView code

rule birth_r {
 precondition:;
 pattern: ArounfFirstAction; proceedAction |birth;

aroundLastAction;success;
 postcondition:; fail:;
}

Fig. 13: weaving aspect at port behavior level

<!-- Redirect to the envelope port -->
<jsp:forward page=""../envelope/active/cpBirth ">

Fig. 15: Inside cpBirth.jsp

Fig. 16: Inside the envelope port cpBirth.jsp

<%@ page contentType="text/html; charset=utf-8"
 language="java" %>
<!-- Redirect to the connected port. use of absolute parth -->
<jsp:forward
 page="/CivilStateCmp/docRep/envelope/active/spBirth.jsp" >

<%@ page contentType="text/html; charset=utf-8"
language="java" import="iasa.security.*" %>

<!— Boolean Aspect DOAP : Transformation process -->
<%=boolean proceedState = true%>
<!-- ------ ----- Around body part 1 -->
<% AuthACmp.pAuthAdvice.aroundFirstAction;
 proceedState =
 AuthACmp.pAuthAdvice.proceedAction;
 If (proceedState) {
%>
<!-- ------ ----- Around body end of part 1 -->
<!-- Redirect to the connected port. use of absolute parth -->
<jsp:forward
page="/CivilStateCmp/docRep/envelope/active/spBirth.jsp">
<!-- ------ ----- Around body part 2 -->
<%}
 AuthACmp.pAuthAdvice.aroundLastAction;
%>
<!-- ------ ----- Around body end of part 2 -->

Fig.17: The envelope after aspect Injection

////// File E_APC.dpy
// Description of recognized deployment architecture and
// deployment case
package eapc.component
component E_APC {
 architecture {
 environment tomcat {
 machine localhost;
 container tomcat5.5 ; //apache Tomcat 5.5
 namespace eapc ; //localhost:8080/eapc
 os UNIX; // Generic name used.
 deploymentcase {APPLET, JAVASCRIPT,JSP,
 SERVLET, BEAN, CLASS}
 } // Many environment may be defined.
 }
// Definition of the deployment map.
// Many maps may be defined for the same application
deploymentmap map_for_tomcat {
 deploy this as JSP in tomcat; // produce E_APC.jsp
 // rall : Recursive Deployment: Target composition tree
 deploy rall as JSP in tomcat ;
}

Fig. 12: Deployment specification

 8

Figure 17 presents the result of weaving the security
aspect using the around activation mode. We notice in
figure 17 that the after part of the around activation mode
is executed only if the proceed part indicates that the join
point is not executed.

8 CONCLUSION

The work described in this paper is an actual
experience where a software architecture approach is
used to realize a complex EGovernment software system
deployed in Java web technology. In this experience, the
IASA approach and its software elaboration process were
conducted in parallel with the realization of the same
product using the EJB component model and the
elaboration phase of the Catalysis object oriented design
process [21]. This experience showed the high flexibility
and the power of IASA to easily handle software
architecture specification and to reduce the realization
time. Compared to the object oriented project realized
using an object oriented approach based on EJB, the
realization time in IASA using Java web technologies
was by far the shortest.

This time performance may be explained by the
following facts
- The use of EJB in the context of an object oriented

approach requires the direct control of several
technologies (Servlet, JSP, JavaBeans, EJB, XML
etc.) and concepts, whereas in IASA, the only
concepts to be acquired are the fundamental
concepts of software architecture (component, port,
connectors)

- The concepts of composition, link component and
the aspect management facilities provided by SEAL
language. These concepts allowed the designers to
follow a clear and organized top down design
process as shown in this paper. The composition
concept is not natively supported by the EJB
component model.

This achieved work has also shown some challenges
the IASA approach is currently facing. Currently, the
main challenge is located in the transformation process
from an abstract view described in SEAL to a concrete
view, represented in one or more implementation
technologies. The transformation process, as in [22],
produces a great amount of code. This situation is mainly
due to the envelope concept which is associated with
each component instance. Optimizing the number of
envelope in the transformation process represents one of
the planned future works in the IASA approach

9 REFERENCES
[1] N. Medvidovic, R. N. Taylor, “A Classification and

Comparison Framework for Software Architecture
Description Languages”, IEEE Transactions on
Software Engineering, Vol. 26, no1, pp. 70-93,
January 2000

[2] Vestal, S., 1993. Scheduling and Communicating in
MetaH. Real-Time Systems Symp., pp: 194-200,
Raleigh-Durham (NC).

[3] Medvidovic, N., R.N. Taylor and E.J. Whitehead,
Formal modeling of software architectures at multiple
levels of abstraction. Proc. California Software
Symp., pp: 28-40, 1996, Los Angeles, CA.

[4] R. J. Allen, “A Formal Approach to Software
Architecture”, PHD Thesis, May 1997, http://www-
2.cs.cmu.edu/afs/cs/project/able/www/able

[5] D. Bennouar “The Integrated Approach to Software
Architecture”, Internal Report, IR2008/SAP03,
LRDSI Lab, CS Department, The Saad Dahlab
University, Algeria, Jan. 2008 (in French),

[6] D. Bennouar, T. Khammaci, and A. Henni, A New
Approach To Component's Port Modeling In
Software Architecture, ACIT’2007, Lattikia, Syria,
Dec; 2007

[7] Krechetov, B. Tekinerdogan, A. Garcia, C. Chavez,
and U. Kulesza. Towards an Integrated Aspect-
Oriented Modeling Approach for Software
Architecture Design. in 8th International Workshop
on Aspect-Oriented Modeling, AOSD 2006. 2006.
Bonn, Germany

[8] A. Navasa, M. A. Perez, J. Murillo, and J. Hernandez.
Aspect oriented software architecture: a structural
perspective. In Proceedings of the Aspect-Oriented
Software Development, 2002, The Netherlands.

[9] Aldrich, J. (2005). Open modules : Modular
reasoning about advice. In ECOOP 2005 - Object-
Oriented Programming, 19th European Conference,
Glasgow, UK, July 25-29, 2005,Proceedings, volume
3586, pages 144–168. Springer. 86

[10] Norman Richards, Marc Fleury, Scott Stark, JBoss
4.0 - The Official Guide, Sams, April 2005

[11] Davy Suvée, Wim Vanderperren, and Viviane
Jonckers. JAsCo: an aspectoriented approach tailored
for component based software development. In
Proceedings of the 2nd international conference on
Aspect-oriented software development, pages 21_29.
ACM Press, 2003.

[12] H. Fakih, N. Bouraqadi, and L. Duchien. Aspects
and software components: A case study of the fractal
component model. In International Workshop on
AOSD, Beijing, China, September 2004.

[13] N. Pessemier, Unification of aspects and
components approaches PhD thesis, Université of
Science and Technologies,Lille, France, June 2007

[14] Russ Miles - AspectJ Cookbook – Real World
Aspect Oriented Programming with Java, O'Reilly,
2005

[15] OMG, Action semantics for the UML, Final
submission. TR, Object Management Group, 2001

[16] D.Bennouar, “Aspect Oriented Software
Architecture in the IASA Approach”, Internal Report,
IR2008/SAP05, LRDSI Lab, CS Department, The
Saad Dahlab University, Algeria, May 2008.

[17] Bruneton et al., 2006] Bruneton, É., Coupaye, T.,
Leclercq, M., Quéma, V., and Stéfani, J.-B. The
fractal component model and its support in java. In
Software Practice and Experience, special issue on
Experiences with Auto-adaptive and Reconfigurable
Systems, 2006.

 9

[18] A. Saadi, An action language for the specification
and validation of software architecture behavior,
Magister Thesis, LRDSI Lab, Computer Science
Department, The Saad Dahlab University, Blida,
Algeria, June 2008.

[19] N.R. Mehta, N. Medvidovic, S. Phadke, Towards a
Taxonomy of Software Connectors, Proceedings of
ICSE2000, May 2000.

[20] T. Bures, F. Plasil, Scalable Element-Based
Connectors, Proceedings of SERA 2003, SF, USA,
June 2003.

[21] D’Souza Desmond et Alan Wills. Objects,
Components and Frameworks With UML : The
Catalysis Approach.. Addison-Wesley, 1999

[22] Karl J. Lieberherr: Adaptive Object-Oriented
Software: The Demeter Method with Propagation
Patterns. PWS Publishing Company, International
Thomson Publishing, Boston, 1995.

