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A B S T R A C T   

The present work is aimed for investigation the groundwater quality for drinking purposes in El Mila plain, 
Algeria. This is carried out through an integrated approach of groundwater quality index (GWQI) and geo-
statistical method for mapping this index based on 35 wells and then hydrochemical parameters. Kriging has 
become a widely used interpolation method to estimate the spatial distribution of the groundwater quality index. 
The main objective of this study is to evaluate two geostatistical interpolation methods such as Ordinary kriging 
(OK) and Co-kriging (CK) for enhanced spatial interpolation of the groundwater quality index. The results of 
GWQI show that about 11.43% of the total samples fall in the excellent water class, and 85.71% samples reported 
good water quality type, whereas 2.86% groundwater samples exhibited poor water quality type. GWQI had a 
very strong significant correlation with EC, Ca, Mg, SO4 and HCO3. Therefore, these parameters were used as co- 
variables for Co-kriging method. The prediction performance of the adopted interpolation methods is assessed 
through cross-validation test. The results show that Co-kriging model with electrical conductivity (EC) as co- 
variable is superior to the other models to predict the groundwater quality index.   

1. Introduction 

Groundwater is the most important natural resource used for 
drinking by many people around the world. The variation of the 
groundwater quality is a function of physical and chemical patterns in 
an area determined by geological and anthropogenic activities. Since the 
quality of groundwater resources is as important as its quantity; thus, it 
is also necessary that the quality of the groundwater resources should be 
essentially taken into the full consideration (Neisi et al., 2018; Abbasnia 
et al., 2018). In recent years, with increasing number of physical and 
chemical parameters of groundwater, a broad scope of geostatistical 
methods is now utilized for proper analysis and interpretation of infor-
mation. More and more researchers are concentrating on the evaluation 
of the spatial distribution of groundwater quality using many geo-
statistical methods in recent decades (Guettaf et al., 2014; Kumar et al., 
2014; Singh et al., 2013; Belkhiri and Lotfi, 2014). 

Geostatistical method is a useful tool for analyzing the structure of 
spatial variability, interpolating between point observations and 
creating the map of interpolated values with an associated error map 
(Zhou et al., 2011; Arslan, 2012). Several studies have reported that 

groundwater quality is generally characterized by a significant spatial 
variation (Taghizadeh-Mehrjardi, 2014; Alexander et al., 2017; Mar-
oufpoor et al., 2017). This suggests that geostatistical methods, which 
are explicitly able to incorporate the spatial variability of groundwater 
quality into the estimation process should be employed. Nowadays, 
different geostatistical techniques methods being widely used for pre-
diction of spatial variations of groundwater quality (Nazari Zade et al., 
2006; Jasmin and Mallikarjuna, 2014; Belkhiri and Narany, 2015, 
2017). Kriging is one of the geostatistical interpolation approaches 
consist of several methods, including Indicator kriging, Simple kriging, 
Ordinary kriging and Co-kriging, which commonly applied in estimating 
spatial distribution of variables (Lee et al., 2007; Babiker et al., 2007; 
Dindaroglu, 2014; Gyamfi et al., 2016). Ahmadi and Sedghamiz (2007) 
analyzed the spatial and temporal variations of groundwater level using 
Ordinary kriging and Co-kriging methods. Delbari (2010) estimated the 
salinity and the depth of groundwater using Ordinary kriging, 
Co-kriging, and the inverse fourth power of distance methods. Also, 
Hooshmand et al. (2011) applied kriging and Co-kriging methods to 
evaluate the chloride content and sodium adsorption ratio in the 
groundwater. 
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The objectives of this study are: (1) to compute the groundwater 
quality index (GWQI), (2) to determine the relationships between GWQI 
and hydrochemical parameters in groundwater, and (3) to evaluate and 
compare the Kriging and the Co-kriging procedures to estimate the 
groundwater quality index on unobserved points. 

2. Study area and data description 

Fig. 1 shows the geographical locations of the study area and 
groundwater sampling wells. The study area is situated in El Mila plain 
at a few kilometers from the Mediterranean Sea and between eastern 
longitude of 6010’-6020’E and northern latitude of 36040’-36047’N. The 
El Milia region has a Mediterranean climate characterized by warm 
summers and mild winters but is very humid. The average annual of 
temperature and precipitation is 17 ◦C and 930 mm, respectively (Bel-
khiri et al., 2018). 

Groundwater samples were collected from 35 wells during April 
2015, located in the alluvial aquifer (Mio-Plio-Quaternary). Hydro-
geologically, this aquifer is considered as an important reservoir and 
source of water in this region. 

3. Methodology 

3.1. Hydrochemical parameter analyzed 

The hydrochemical parameters used in this study consist of pH, 
electrical conductivity (EC) and major dissolved ions such as calcium 
(Ca), magnesium (Mg), sodium (Na), potassium (K), chloride (Cl), sul-
fate (SO4), bicarbonate (HCO3), and nitrate (NO3). The samples were 
collected in April 2015 using standard methods (APHA, 2005; ISO, 
1993). pH and EC were measured with a multi-parameter WTW (P3 
MultiLine pH/LF-SET). Ca and Mg were estimated titrimetrically using 
0.05N–0.01 N EDTA. Na and K were analyzed by flame photometer. 
HCO3 and Cl by H2SO4 and AgNO3 titration, respectively, and SO4 by 
turbidimetric method (Clesceri et al., 1998). NO3 was analyzed with 
UV–visible spectrophotometer. The accuracy of the chemical analysis 
was verified by calculating ion-balance errors where the errors were 
generally around 5%. The accuracy of the chemical ion data was 
calculated using charge balance equation given below, and the charge 
balance error (CBE) of the groundwater samples was within the accepted 
limits of ±5%. 

CBE(%)=

∑
cations −

∑
anions

∑
cations +

∑
anions

*100 (1) 

Fig. 1. Location of the study are and groundwater samples.  

Table 1 
Relative weight of hydrochemical parameters in study area.  

Parameters Si=WHO Standard (2004) Weight (wi) Relative weight (Wi) 

pH 8.5 3 0.081 
EC 500 5 0.135 
Ca 75 5 0.135 
Mg 50 4 0.108 
Na 200 3 0.081 
K 12 2 0.054 
Cl 250 5 0.135 
SO4 250 3 0.081 
HCO3 500 5 0.135 
NO3 45 2 0.054 
Sum  37 1.000  

Table 2 
Classification of groundwater based on GWQI (Sahu and Sikdar, 2008).  

Range Type of water Numbers of wells 

<50 Excellent water 4 
50–100.1 Good water 30 
100–200.1 Poor water 1 
200–300.1 Very poor water 0 
>300 Water unsuitable for drinking purposes 0  

Table 3 
Statistical descriptive of the hydrochemical parameters and GWQI.  

Parameters Min Max Mean Std. 
dev 

Coef. 
var 

Numbers of wells 
exceeding the 
standard 

pH 6 7.5 6.77 0.26 4 0 
EC 228 1411 821 279 34 30 
Ca 16 198 96 32 34 28 
Mg 11.02 61.32 37.39 12.01 32.12 5 
Na 12.47 38.14 24.57 4.99 20.29 0 
K 1.78 5.45 3.51 0.71 20.29 0 
Cl 63.90 255.60 150.08 53.12 35.40 1 
SO4 61.39 270.00 125.97 49.93 39.64 2 
HCO3 97.60 524.60 232.02 90.22 38.88 1 
NO3 0.02 47.54 23.47 14.77 62.90 2 
GQWI 44.55 102.49 70.11 15.05 21  

Min: Minimum; Max: Maximum; Std.dev: Standard deviation; Coef.var: Coeffi-
cient of variation. 

L. Belkhiri et al.                                                                                                                                                                                                                                 
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where 
∑

cations and 
∑

anions are the sum of cations and anions, 
respectively, expressed in equivalents par liter. 

3.2. Groundwater quality index (GWQI) 

Groundwater quality index (GWQI) method reflects the influence of 
the hydrochemical parameters of groundwater on the suitability for 
drinking purposes (Sahu and Sikdar, 2008; Belkhiri et al., 2018). The 
estimation of the GWQI index was based on parameter weighting. In the 
current study, three steps were followed in to order to calculate GWQI 
based on 10 parameters at each well. 

In the first step, the relative weight (Wi) of each parameter was 
estimated as follows: 

Wi =
wi

∑n

i=1
wi

(2)  

where wi is the weight of each parameter, and n is the number of pa-
rameters. Assigning of weight (wi) to the different groundwater pa-
rameters according to their relative importance in the overall quality of 
groundwater for drinking purposes (weight ranged from 1 to 5). The 
weights according to the World Health Organization standards (WHO, 
2004) are presented in Table 1. 

In the second step, the quality rating scale (qi), which related the 
value of the parameter to the WHO standards, was calculated as follows: 

qi =

(
Ci − Ci0

Si − Ci0

)

*100 (3)  

where Ci is the concentrations of each parameter (mg/l), Si is the stan-
dard permissible value of each parameter (mg/l). For all parameters, 
and Ci0 is the ideal value of each parameter in pure water (consider 

Table 4 
Correlation coefficient matrix of hydrochemical parameters.   

pH EC Ca Mg Na K Cl SO4 HCO3 NO3 GWQI 

pH 1           
EC 0.02 1          
Ca 0.06 0.28 1         
Mg 0.19 0.41 0.16 1        
Na 0.11 0.54 0.07 0.22 1       
K 0.11 0.54 0.07 0.22 1.00 1      
Cl 0.13 0.08 − 0.25 − 0.10 − 0.02 − 0.02 1     
SO4 0.38 0.61 0.42 0.22 0.23 0.23 0.14 1    
HCO3 0.16 0.44 0.23 0.15 0.22 0.22 0.28 0.38 1   
NO3 0.05 0.00 − 0.07 0.12 0.26 0.26 − 0.19 − 0.31 0.13 1  
GWQI 0.26 0.85 0.59 0.51 0.47 0.47 0.16 0.71 0.63 0.08 1 
Significant coefficients at the 0.05 and 0.01 levels 
pH 0           
EC 0.928 0          
Ca 0.741 0.105 0         
Mg 0.282 0.014 0.372 0        
Na 0.520 0.001 0.698 0.194 0       
K 0.520 0.001 0.699 0.194 0.000 0      
Cl 0.468 0.668 0.144 0.581 0.895 0.896 0     
SO4 0.023 0.000 0.013 0.204 0.190 0.190 0.434 0    
HCO3 0.361 0.008 0.177 0.403 0.201 0.201 0.102 0.023 0   
NO3 0.788 0.991 0.671 0.488 0.131 0.130 0.284 0.071 0.458 0  
GWQI 0.137 0.000 0.000 0.002 0.005 0.005 0.350 0.000 0.000 0.662 0  

Fig. 2. Plot of training (blue color) and testing (red color) data. (For inter-
pretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 

Table 5 
Best fitted semivariogram models and model parameters for GWQI.  

Models Range Nugget (C0) p-sill (C) Nugget-sill ratio ((C0/C0+C)*100) SSErr R2 

Exponential 434.6967 0.001951 0.009784 16.63 3.25E-11 0.977175 
Spherical 1344.937 0.004263 0.007399 36.55 1.57E-11 0.990538 
Gaussian 421.247 0.000802 0.010959 6.82 3.28E-11 0.982465 
Linear 1373.8412 0.005699 0.00609 48.34 1.72E-11 0.990209 
Matern 434.6967 0.001951 0.009784 16.63 3.25E-11 0.977175  

L. Belkhiri et al.                                                                                                                                                                                                                                 
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Ci0 = 0 for all parameters) except the pH value where Ci0 = 7). 
In the final step, GWQI of each well was given as follows: 

GWQI =
∑n

i=1
Wi*qi (4) 

The groundwater quality based on GWQI can be classified into five 
classes, as listed in Table 2. 

3.3. Geostatistical methods 

Kriging and Co-kriging analysis were performed to produce predic-
tion maps of the groundwater quality index (GWQI). Kriging is a geo-
statistical technique that is used to interpolate a surface from a scattered 
set of known points in which a continuous surface of values can be 
predicted between the known locations. Variogram model controls 
Kriging weights. Variogram is mathematically defined as a measure of 
semi-variance as a function of distance. 

γ(h)=
1

2N(h)

∑N(h)

i=1
[z(xi) − z(xi + h)]2 (5)  

where γ(h) is the semi-variance; N(h) the number of pairs separated by 
distance or lag h; Z(xi) the measured sample at point xi; and Z(xi + h) the 
measured sample at point (xi + h). The spatial structure of the data is 
determined by fitting a mathematical model to the experimental. The 
mathematical models provide information about the structure of the 
spatial variation, as well as the input parameters for kriging. The model 
was fitted to the environmental variables, which showed that these 
variables had a spatial autocorrelation in their effective ranges. Expo-
nential, spherical, Gaussian and Linear models were used to fit the 
experimental variogram of data pairs. 

3.3.1. Ordinary kriging (OK) 
OK is a geostatistical interpolation method based on spatially 

dependent variance, which used to find the best linear unbiased estimate 

(Goovaerts, 1997). The general form of Ordinary kriging equation can 
be written as: 

Ẑ
(
xp
)
=

∑n

i=1
λiZ(xi) (6) 

In order to achieve unbiased estimations in kriging the following set 
of equations should be solved simultaneously: 

∑n

i=1
λiγ

(
xi, xj

)
− μ = γ

(
xi, xp

)
where j = 1, ..., n

with
∑n

i=1
λi = 1

(7)  

where Ẑ(xp) is the estimated value of variable Z (i.e., GWQI) at location 
xp; Z(xi) is the known value at location xi; λi is the weight associated with 
the data; μ is the Lagrange coefficient; γ(xi,xj) is the value of variogram 
corresponding to a vector with origin in xi and extremity in xj; and n is 
the number of sampling points used in estimation. 

3.3.2. Co-kriging method (CK) 
CK estimator is the multivariate equivalent to kriging, which has 

secondary variables. By using multiple datasets, it is a very flexible 
interpolation method, allowing the user to investigate graphs of cross- 
correlation and autocorrelation. Co-Kriging estimation is introduced 
by the following equation: 

∑v

l=1

∑n

i=1
λilλlvγ

(
xi, xj

)
− μv = γuv

(
xi, xp

)
where j = 1, ..., n and u = 1, ..., v

with
∑nl

i=1
λil =

{
1, 1 = u
0, 1 ∕= 1u

(8)  

where u and v are the primary and covariate (secondary) variables, 
respectively. The two variates u and v are cross-correlated and the co-
variate contributes to the estimation of the primary variate. 

Fig. 3. a) Empirical semivariance of GWQI and its fitted model: b) Exponential model, c) Spherical model, d) Gaussian model, e) Linear model and f) Matren model.  

L. Belkhiri et al.                                                                                                                                                                                                                                 
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For CK analysis, the cross-variogram should be determined in prior. 
The cross-variogram models between the primary and secondary vari-
ables are obtained by fitting with an experimental cross-variogram that 
is given by 

γuv(h)=
1

2N(h)
∑N(h)

i=1
[zu(xi) − zu(xi + h)][zv(xi) − zv(xi + h)] (9) 

Ordinary kriging (OK) and Co-kriging (OK) analysis were performed 
to produce prediction maps of the groundwater quality index (GWQI) 
values. The different covariates used in this study are determined based 
on the significant correlation between groundwater quality index and 
the different hydrochemical parameters. 

3.3.3. Cross-validation method 
To evaluate the performance of interpolation methods is used the 

cross-validation method. In this study, estimated and observed values 
were compared using mean errors (bias: ME), root mean square errors 
(precision: RMSE) and squared deviation ratio (MSDR). The smallest 
ME, RMSE and MSDR indicate the most accurate predictions. 

Some R packages are designed delicately for kriging, in this study, we 
use “gstat”, “rgdal”, “maptools”, “sp”, “lattice” packages to implement a 
common type of spatial interpolation. 

4. Results and discussions 

4.1. Statistical descriptive of the hydrochemical parameters 

A statistical summary of hydrochemical data of groundwater samples 
is given in Table 3. All the groundwater samples showed the pH values 
ranged from 6 to 7.5 with a mean value of 6.77, indicating acidic to 
slight alkaline in nature. The electrical conductivity values of the sam-
ples ranged from 228 to 1411 μS/cm with a mean of 821 μS/cm which 
presents the high amount of salts in the groundwater. Most of the 
groundwater samples (86%) showed high value of EC and may not be 
suitable for drinking purposes (WHO, 2004). The calcium and magne-
sium values of the samples ranged from 16 to 198 and 
11.02–61.32 mg/l mg/l with a mean of 96 and 37.39 mg/l respectively. 
The results revealed that, 80% and 14% of total samples for Ca and Mg, 
respectively, were above the limits fixed by WHO (2004). High con-
centration of Ca and Mg in groundwater could cause some negative ef-
fects like health effect such as abdominal ailments as well as economic 
and hydraulic effect such as scaling. The values of sodium and potassium 
varied from 12.47 to 38.14 mg/l and 1.78–5.45 mg/l, respectively, 
indicating that all values for both cations were lower than the WHO 
standard level (WHO, 2004). Cl concentration in the area varied from 
63.9 to 255.6 mg/l with a mean of 150.08 mg/l. SO4 values in the area 
ranged from 61.39 to 270 mg/l with mean value 125.97 mg/l. Bicar-
bonate concentration in groundwater ranged from 97.60 to 524.6 with a 

Fig. 4. Spatial prediction map of GWQI (log10) obtained by a) Ordinary Kriging (OK), b) Co-Kriging (CK) with EC, c) CK with Ca, d) CK with Mg, e) CK with SO4 and 
f) CK with HCO3. Black dots are groundwater samples. 
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mean of 232.02 mg/l. Only one sample for chloride and bicarbonate and 
two samples for sulfate were lower than the WHO standard level (WHO, 
2004), while the other samples were within the WHO standard for 
drinking water. Nitrate and nitrite concentration were found in samples 
ranged from 0.02 to 47.54 mg/l and 0.01–47.54 mg/l, respectively. Two 
samples were found to be exceeding the WHO for NO3. 

Understanding the relationship and variations between the different 
hydrochemical parameters and explaining the interaction between them 
could be carried out based on the statistical analysis (Meireles et al., 
2010; Ahamad et al., 2018). The contamination of groundwater is pri-
marily accountable for the variations in electrical conductivity. The 
relationship between different parameters is shown in Table 4. Ac-
cording to the results, pH-SO4 (0.38), Ca–SO4 (0.42), Na–K (1.00), and 
SO4–HCO3 (0.38) indicate significant correlations. Significant positive 
correlation between EC and Mg (0.41), Na–K (0.54), SO4 (0.61), and 

HCO3 (0.44) is suggestive of significant natural and anthropogenic ac-
tivities leading to the addition of these ions into the groundwater of the 
region. 

4.2. Evaluation of drinking water quality 

Suitability of groundwater quality for drinking water purposes could 
be distinguished based on the hydrochemical parameters. Rating of 
groundwater in the aspect of quality and consumption using the influ-
ence of individual water quality parameters can be helpful in making 
decision by managers and administrative organizations. 

The results of GWQI of the groundwater samples are presented in 
Tables 2 and 3 The GWQI values ranged from 44.55 to 102.49 with a 
mean value of 70.11, which can be placed in three classes, namely poor 
water, good water, and excellent water quality. The results revealed that 

Fig. 5. Spatial prediction errors map of GWQI (log10) obtained by a) Ordinary Kriging (OK), b) Co-Kriging (CK) with EC, c) CK with Ca, d) CK with Mg, e) CK with 
SO4 and f) CK with HCO3. Black dots are groundwater samples. 

Table 6 
Compare the cross-evaluation errors for different models.  

Models Min Mean Max ME RMSE MSDR 

OK − 0.1816 − 0.00235 0.171359 − 0.00235 0.100787 1.163582 
CK with EC − 0.15326 0.001778 0.115835 0.001778 0.051449 0.747344 
CK with Ca − 0.2334 − 0.00469 0.390785 − 0.00469 0.116067 8.181616 
CK with Mg − 0.24811 0.00435 0.217444 0.00435 0.098116 2.615486 
CK with SO4 − 0.17292 − 0.00028 0.153277 − 0.00028 0.080772 4.094798 
CK with HCO3 − 0.24523 − 0.00325 0.13982 − 0.00325 0.094937 4.930154  
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about 11.43% of the groundwater samples fall in the excellent water 
class, and 85.71% samples reported good water quality type, whereas 
2.86% groundwater samples exhibited poor water quality type. Form 
Table 4, we can see that GWQI had a significant positive correlation with 
EC (0.85), SO4 (0.71), HCO3 (0.63), Ca (0.59), Mg (0.51), and Na–K 
(0.47). The strong significant correlation of the parameters such as EC, 
Ca, Mg, SO4 and HCO3 with GWQI is selected as co-variables to pre-
dicted spatially the groundwater quality index. In this study, we 
compared five possible co-variables based on their strong significant 
correlation with GWQI. 

4.3. Spatial interpolation method 

The groundwater quality index (GWQI was interpolated by Kriging 
and Co-kriging (CK) methods. The data frame of water sample points 
contains 35 wells (observations) and the prediction grid has 15088 lo-
cations, spaced every 50 m in both the East and North grid directions, 
covering the irregularly-shaped study area. Because of the wide nu-
merical range of the GWQI values we worked with the log-transformed 
target variable; to allow easy interpretation of the results we used base- 
10 logarithms (log10) for each parameter. In order to experiment an 
independent validation, we first need to separate the data into a training 
data and test data. Then we use the training dataset to predict the value 
in the test dataset. In this study, 30% of the data has been excluded for 
testing (Fig. 2). 

4.3.1. Selecting the best fitted variogram models 
The spatial dependence of the groundwater quality index was 

determined by semivariance analysis, which indicated that the calcu-
lated index was modeled with different semivariogram models with a 
nugget effect. Sum of squares errors (SSErr) and regression coefficient 

(R2) provided an exact measure of how well the model fit the variogram 
data, with lower SSErr and higher R2 indicating better model fits. The 
parameter values of the different fitted models are presented in Table 5. 
Theory and empirical semivariogram were prepared for the GWQI as 
shown in Fig. 3. The results of the selecting of the best fitted variogram 
model show that spherical model was found as the most accurate model 
for GWQI. 

Spatial dependency is commonly accessed in terms of the ratio of 
nugget (C0) to sill (C0+C) expressed in percentage. In this respect, the 
GWQI index is considered as a strong spatial dependence when the value 
of ratio is less than 25%, a moderate spatial dependence when this value 
is between 25% and 75%, and a weak spatial dependence when the 
value is greater than 75%. Form Table 5, we see clearly that the spatial 
dependence of GWIQ for the best fitted semivariogram model is mod-
erate with a ratio of 36.55%. 

4.3.2. Ordinary Kriging and Co-Kriging interpolations of the GWQI 
The best fitted model (spherical model) of regionalization is used to 

interpolate the groundwater quality index (log10 GWQI) with both Or-
dinary kriging (OK) and Co-kriging (CK) methods on the prediction grid. 
First, we predict the GWQI without the co-variables. Then, CK method is 
applied with EC, Ca, Mg, SO4, and HCO3 as co-variables to predicted the 
groundwater quality index. 

In this step, we compare graphically the predictions and their errors 
of the GWQI variable form OK and CK. Figs. 4 and 5 show the predictions 
and their errors of the GWQI (log10) distribution across the study area 
from different models. The maps of CK with co-variables provide some 
new regions where the GWQI values are high. The high values of GWQI 
could be observed in the center of the plain near to the El Milia city and 
southern region, which might be principally caused by both anthropo-
genic activities and erosion of natural deposits. 

Fig. 6. Spatial distribution of the evaluation errors for: a) Ordinary Kriging (OK), b) Co-Kriging (CK) with EC, c) CK with Ca, d) CK with Mg, e) CK with SO4 and f) CK 
with HCO3. 
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From Fig. 5, we can see that the OK prediction errors map shows the 
expected low errors near the water sample points, whereas CK with 
different co-variables gives the lowest errors averaged across the map. 
This is because the co-kriging predictions are based not only on the 
target variable (GWQI) but also the co-variable at these points as well as 
their covariance (Rossiter, 2018). 

4.3.3. Evaluation of geostatistical methods 
For the evaluation, we used the cross-validation performance to 

evaluate the performance of the different interpolations based on the 
testing dataset (30%). To compare the evaluations for the different 
models, diagnostic measures such as ME (mean errors), RMSE (root 
mean square errors) and MSDR (squared deviation ratio) of the residuals 
to the prediction errors are calculated (Table 6). Fig. 6 shows bubble 
plots of the cross-evaluation errors for all models where positive values 
are plotted in green blue and negative in red, with the size of the bubble 
proportional to the distance from zero. From Table 6 and Fig. 7, we see 
clearly that the Co-kriging model with EC as co-variable is superior to 
the other models in all measures. 

5. Conclusion 

In this study, geostatistical interpolation methods were used in order 
to understand the spatial distribution of the groundwater quality index 
(GWQI). Descriptive and correlation analysis were conducted to deter-
mine the significant correlations between GWQI and all parameters. 
Strong significant correlation was observed between GWQI and EC, Ca, 
Mg, SO4 and HCO3, indicating the significant natural and anthropogenic 
activities leading to the addition of these ions into the groundwater. 
Ordinary Kriging and Co-kriging procedures were applied to estimate 
the spatial distribution of GWQI values at the unobserved locations of 

the study area. For CK method, EC, Ca, Mg, SO4 and HCO3 were 
considered as co-variables. Cross-validation was estimated to evaluate 
and compare the performance of the different proposed models. The 
results show that Co-kriging with electrical conductivity as co-variable is 
higher than the other models which means its higher accuracy than 
Kriging method to predict the groundwater quality index. 
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