Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-bouira.dz:8080/jspui/handle/123456789/10092
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorKennouche, Salim-
dc.contributor.authorLe Moigne, Nicolas-
dc.date.accessioned2020-11-10T13:47:51Z-
dc.date.available2020-11-10T13:47:51Z-
dc.date.issued2015-
dc.identifier.urihttp://dspace.univ-bouira.dz:8080/jspui/handle/123456789/10092-
dc.description.abstractBlends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(butylene succinate) (PBS) at different weight ratios (80/20, 50/50 and 20/80 w/w) and ternary PHBV/PBS/halloysite nanotubes (HNT) nanocomposites were prepared by melt compounding. Typical co-continuous and nodular morphologies were obtained with the neat blends. The effect of maleic anhydride-grafted PHBV (PHBV-g-MA) compatibilizer and HNT on the nodular microstructure and thermal properties of PHBV/PBS/HNT nanocomposites was investigated. Morphological observations using scanning electron microscopy (SEM) showed an improved dispersion of PBS nodules in the immiscible PHBV/PBS 80/20 blends, owing to the diffusion and emulsifying effect of PHBV-g-MA chains at the PHBV/PBS interface. A preferential location of HNTs in the PBS nodules was observed, due to their better wettability with PBS phase. Image analysis showed that combining HNT and compatibilizer led to a reduced emulsifying effect, attributed to the formation of PHBV-g-MA/HNT aggregates that limit the diffusion of PHBV-g-MA chains at the interface. Thermogravimetric analysis (TGA) and Pyrolysis Combustion Flow Calorimetry (PCFC) showed a better thermal stability and fire reaction of PHBV in the PHBV/PBS blends as compared to neat PHBV. Incorporation of HNT in the blends decreased their thermal stability but improved significantly their fire reaction, whereas combining PHBV-g-MA and HNT seems to level the influence of each component.en_US
dc.language.isoenen_US
dc.subjectNanocomposite Halloysite Polymer blend Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) Poly(butylene succinate) (PBS)en_US
dc.titleMorphological characterization and thermal properties of compatibilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/poly(butylene succinate) (PBS)/halloysite ternary nanocompositesen_US
dc.typeArticleen_US
Collection(s) :Articles

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
salim K.docx88,17 kBMicrosoft Word XMLVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.