Please use this identifier to cite or link to this item: http://dspace.univ-bouira.dz:8080/jspui/handle/123456789/11386
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEL Meddahi, Y.-
dc.contributor.authorDjafer, khodja H .-
dc.date.accessioned2021-06-07T12:31:15Z-
dc.date.available2021-06-07T12:31:15Z-
dc.date.issued2019-09-19-
dc.identifier.urihttp://dspace.univ-bouira.dz:8080/jspui/handle/123456789/11386-
dc.description.abstractDrought is considered among the natural disasters and extreme events that have affected the environment over the past decades. Drought prediction plays an important role in monitoring and identifying this phenomenon The main objective of this work is to develop a drought forecasting model in the Isser catchment. Using the time series of the standard precipitation index (SPI) for 6 and 12 months as a database to form and evaluate the multilayer artificial neural network model. The prediction results obtained by the artificial neural networks show the performance of this model and are more accurate for a series of SPIs of longer durations (SPI 12 months compared to SPI 6 months).en_US
dc.language.isofren_US
dc.publisherUniversité AKLI MOHAND OULHADJ-Bouiraen_US
dc.subjectG.Cen_US
dc.titlePrévision de la sécheresse par réseaux de neurones artificiels et séries chronologiques d'indices de sécheresseen_US
dc.typeThesisen_US
Appears in Collections:Mémoires Master

Files in This Item:
File Description SizeFormat 
MFE.pdf5,07 MBUnknownView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.