Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-bouira.dz:8080/jspui/handle/123456789/12407
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorMellah, Hacene-
dc.contributor.authorHEMSAS, KAMEL EDDINE-
dc.contributor.authorTALEB, RACHID-
dc.contributor.authorCECATI, CARLO-
dc.date.accessioned2022-03-13T09:19:29Z-
dc.date.available2022-03-13T09:19:29Z-
dc.date.issued2018-11-10-
dc.identifier.urihttp://dspace.univ-bouira.dz:8080/jspui/handle/123456789/12407-
dc.description.abstractIn this paper, a sensorless speed and armature resistance and temperature estimator for brushed (B) DC machines is proposed, based on a cascade-forward neural network and quasi-Newton BFGS backpropagation. Since we wish to avoid the use of a thermal sensor, a thermal model is needed to estimate the temperature of the BDC machine. Previous studies propose either nonintelligent estimators that depend on the model, such as the extended Kalman filter and Luenberger's observer, or estimators that do not estimate the speed, temperature, and resistance simultaneously. The proposed method has been verified both by simulation and by comparison with the simulation results available in the literature.en_US
dc.description.sponsorshipCascade-forward neural network, parameter estimation, quasi-Newton BFGS, speed estimation, temperature estimation, resistance estimationen_US
dc.language.isoenen_US
dc.publisherUniversité Akli Mohand Oulhadj-Bouiraen_US
dc.titleEstimation of speed, armature temperature, and resistance in brushed DC machines using a CFNN based on BFGS BPen_US
dc.typeArticleen_US
Collection(s) :Articles

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
h.mellah1.pdf861,64 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.