Please use this identifier to cite or link to this item: http://dspace.univ-bouira.dz:8080/jspui/handle/123456789/12407
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMellah, Hacene-
dc.contributor.authorHEMSAS, KAMEL EDDINE-
dc.contributor.authorTALEB, RACHID-
dc.contributor.authorCECATI, CARLO-
dc.date.accessioned2022-03-13T09:19:29Z-
dc.date.available2022-03-13T09:19:29Z-
dc.date.issued2018-11-10-
dc.identifier.urihttp://dspace.univ-bouira.dz:8080/jspui/handle/123456789/12407-
dc.description.abstractIn this paper, a sensorless speed and armature resistance and temperature estimator for brushed (B) DC machines is proposed, based on a cascade-forward neural network and quasi-Newton BFGS backpropagation. Since we wish to avoid the use of a thermal sensor, a thermal model is needed to estimate the temperature of the BDC machine. Previous studies propose either nonintelligent estimators that depend on the model, such as the extended Kalman filter and Luenberger's observer, or estimators that do not estimate the speed, temperature, and resistance simultaneously. The proposed method has been verified both by simulation and by comparison with the simulation results available in the literature.en_US
dc.description.sponsorshipCascade-forward neural network, parameter estimation, quasi-Newton BFGS, speed estimation, temperature estimation, resistance estimationen_US
dc.language.isoenen_US
dc.publisherUniversité Akli Mohand Oulhadj-Bouiraen_US
dc.titleEstimation of speed, armature temperature, and resistance in brushed DC machines using a CFNN based on BFGS BPen_US
dc.typeArticleen_US
Appears in Collections:Articles

Files in This Item:
File Description SizeFormat 
h.mellah1.pdf861,64 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.