Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-bouira.dz:8080/jspui/handle/123456789/12454
Titre: Estimation of speed, armature temperature, and resistance in brushed DC machines using a CFNN based on BFGS BP
Auteur(s): Mellah, Hacene
Hemsas, Kamel Eddine
TALEB, Rachid
CECATI3, Carlo
Mots-clés: Cascade ; forward neural network
parameter estimation ; speed estimation
Date de publication: 2018
Editeur: Turkish Journal of Electrical Engineering & Computer Sciences
Résumé: : In this paper, a sensorless speed and armature resistance and temperature estimator for brushed (B) DC machines is proposed, based on a cascade-forward neural network and quasi-Newton BFGS backpropagation. Since we wish to avoid the use of a thermal sensor, a thermal model is needed to estimate the temperature of the BDC machine. Previous studies propose either nonintelligent estimators that depend on the model, such as the extended Kalman filter and Luenberger’s observer, or estimators that do not estimate the speed, temperature, and resistance simultaneously. The proposed method has been verified both by simulation and by comparison with the simulation results available in the literatur
URI/URL: http://dspace.univ-bouira.dz:8080/jspui/handle/123456789/12454
Collection(s) :Articles

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
article 4.pdf861,64 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.