Please use this identifier to cite or link to this item: http://dspace.univ-bouira.dz:8080/jspui/handle/123456789/12463
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMellah, Hacene-
dc.contributor.authorBouchaoui, Lahcene-
dc.contributor.authorHemsas, Kamel Eddine-
dc.contributor.authorBenlahneche, Saadeddine-
dc.date.accessioned2022-03-27T09:18:14Z-
dc.date.available2022-03-27T09:18:14Z-
dc.date.issued2021-
dc.identifier.urihttp://dspace.univ-bouira.dz:8080/jspui/handle/123456789/12463-
dc.language.isofren_US
dc.publisherGénie électrique et électromécaniqueen_US
dc.subjectfeed-forward neural networks ; IEC methoden_US
dc.subjectRogers methoden_US
dc.titlePOWER TRANSFORMER FAULTS DIAGNOSIS USING UNDESTRUCTIVE METHODS (ROGER AND IEC) AND ARTIFICIAL NEURAL NETWORK FOR DISSOLVED GAS ANALYSIS APPLIED ON THE FUNCTIONAL TRANSFORMER IN THE ALGERIAN NORTH-EASTERN: A COMPARATIVE STUDYen_US
dc.typeArticleen_US
Appears in Collections:Articles

Files in This Item:
File Description SizeFormat 
arcticle 13.pdf766,22 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.