Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-bouira.dz:8080/jspui/handle/123456789/13464
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorMecheri, Rihab-
dc.contributor.authorDahmani, Smail-
dc.date.accessioned2022-11-24T09:39:33Z-
dc.date.available2022-11-24T09:39:33Z-
dc.date.issued2022-
dc.identifier.urihttp://dspace.univ-bouira.dz:8080/jspui/handle/123456789/13464-
dc.description.abstractThe amount of data generated by the Internet of Things(IoT) is very large. Managing and analyzing all this data is a major challenge. Artificial Intelligence (AI) can do it faster and with greater precision. Thus, AI, and particularly Machine Learning(ML), is an effective ally for processing a growing volume of data. The objective of this work is to propose an intelligent approach for the IoT, in this case we have chosen to work on one of the applications where we can use the IoT, which is water quality prediction . We used three supervised learning algorithms K-Nearest Neighbor (KNN), Decision Tree (DT), and Random Forest (RF) on a database to develop such an approach. The RF algorithm was more efficient than KNN, and DT, as we got the highest accuracy (90%) with the RF algorithm.en_US
dc.language.isoenen_US
dc.publisheruniversité akli mohand oulhadj-bouiraen_US
dc.subjectinternet of things ; artificial intelligenceen_US
dc.subjectmachine learningen_US
dc.titleIntelligent Approaches for IoT: Water Quality Predictionen_US
dc.typeThesisen_US
Collection(s) :Mémoires Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Master_Thesis.pdf5,75 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.