Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-bouira.dz:8080/jspui/handle/123456789/14606
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | Boudref, Mohamed Ahmed | - |
dc.date.accessioned | 2023-04-25T10:25:11Z | - |
dc.date.available | 2023-04-25T10:25:11Z | - |
dc.date.issued | 2019-11-12 | - |
dc.identifier.uri | http://dspace.univ-bouira.dz:8080/jspui/handle/123456789/14606 | - |
dc.description.abstract | This work consists of studying a development of a study of di- mensional reduction and this to construct a renormalizable quantum eld theory. The reduction will be from a 4-dimensional space-time (D = 1 + 3) to a variant with a smaller number of spatial dimensions (D = 1 + d; d < 3) at su¢ ciently small distances. We will prove an important theorem that links the study of Klein Gordon s equation on space (with variable geometry) to the resolution of a Schrödinger equation with an e¤ective potential generated by geometric variation. This result is based on the Fourier method (so- called varaible separation) in Klein Gordon s equation and on the fact that two-dimensional spaces are at. We will show that in the case of the space dimension (d = 2) the conformal factor of the metric between the e¤ective potential in the Schrödinger equation due to the corresponding modi cations of the variables. As an example, we will consider a space-time with a variable spa- tial geometry including a transition to a dimensional reduction. This example which we are going to study contains a combination between two bidimensional cylindrical regions of distinct radii connected by a transition region. | en_US |
dc.language.iso | en | en_US |
dc.title | Equations de Klein Gordon sur les variétés | en_US |
dc.type | Article | en_US |
Collection(s) : | Articles |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
Klein Gordon-Variétés.pdf | Equations de Klein Gordon sur les variétés | 634,31 kB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.