Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-bouira.dz:8080/jspui/handle/123456789/14606
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBoudref, Mohamed Ahmed-
dc.date.accessioned2023-04-25T10:25:11Z-
dc.date.available2023-04-25T10:25:11Z-
dc.date.issued2019-11-12-
dc.identifier.urihttp://dspace.univ-bouira.dz:8080/jspui/handle/123456789/14606-
dc.description.abstractThis work consists of studying a development of a study of di- mensional reduction and this to construct a renormalizable quantum eld theory. The reduction will be from a 4-dimensional space-time (D = 1 + 3) to a variant with a smaller number of spatial dimensions (D = 1 + d; d < 3) at su¢ ciently small distances. We will prove an important theorem that links the study of Klein Gordon s equation on space (with variable geometry) to the resolution of a Schrödinger equation with an e¤ective potential generated by geometric variation. This result is based on the Fourier method (so- called varaible separation) in Klein Gordon s equation and on the fact that two-dimensional spaces are at. We will show that in the case of the space dimension (d = 2) the conformal factor of the metric between the e¤ective potential in the Schrödinger equation due to the corresponding modi cations of the variables. As an example, we will consider a space-time with a variable spa- tial geometry including a transition to a dimensional reduction. This example which we are going to study contains a combination between two bidimensional cylindrical regions of distinct radii connected by a transition region.en_US
dc.language.isoenen_US
dc.titleEquations de Klein Gordon sur les variétésen_US
dc.typeArticleen_US
Collection(s) :Articles

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Klein Gordon-Variétés.pdfEquations de Klein Gordon sur les variétés634,31 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.