Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-bouira.dz:8080/jspui/handle/123456789/14799
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorDahmoune, Farid-
dc.date.accessioned2023-06-07T09:41:50Z-
dc.date.available2023-06-07T09:41:50Z-
dc.date.issued2023-02-
dc.identifier.citationJournal of Food Process Engineeringen_US
dc.identifier.urihttp://dspace.univ-bouira.dz:8080/jspui/handle/123456789/14799-
dc.description.abstractMachine learning and mathematical modeling techniques have been conducted to model the thin layer drying kinetics of pea pods, under either microwave or conventional air drying,. The effect of nine different microwave output powers (200–1000 W) and five different ventilated oven temperatures (40, 60, 80, 100, and 120°C) on drying kinetics was studied. The experimental drying rates were fitted to 11 literature semi‐empirical models to determine the kinetic parameters, finding the higher goodness‐of‐fit for the Midilli et al. model (average R2 = 0.999 for both drying methods). Moreover, the data were modeled using support vector machine (SVM) for regression which was optimized with dragonfly algorithm (DA) technique. The best result was obtained by Gaussian kernel with the optimal parameters σ, C, and ε values estimated as 0.2871, 78.45, and 0, respectively. The small root mean square error (RMSE = 0 …en_US
dc.language.isoenen_US
dc.publisheruniversity bouiraen_US
dc.titleStudy of microwave and convective drying kinetics of pea pods (Pisum sativum L.): A new modeling approach using support vector regression methods optimized by dragonfly algorithm techniqueen_US
dc.typeArticleen_US
Collection(s) :Articles

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
dahmoune farid.pdf1,71 MBUnknownVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.