Please use this identifier to cite or link to this item: http://dspace.univ-bouira.dz:8080/jspui/handle/123456789/14819
Title: Designing an Efficient Surfactant–Polymer–Oil–Electrolyte System: A Multi-Objective Optimization Study
Authors: Nedjhioui, Mohammed
Nasrallah, Noureddine
Kebir, Mohammed
Tahraoui, Hichem
Bouallouche, Rachida
Assadi, Aymen Amin
Amrane, Abdeltif
Jaouadi, Bassem
Zhang, Jie
Mouni, Lotfi
Keywords: polymer
full factorial design
conductivity
interfacial tension
turbidity
viscosity
Issue Date: 2023
Publisher: Université Akli M'hand Oulhadj - Bouira
Abstract: This research aimed to study the effects of individual components on the physicochemical properties of systems composed of surfactants, polymers, oils, and electrolytes in order to maximize the recovery efficiency of kerosene while minimizing the impact on the environment and human health. Four independent factors, namely anionic surfactant sodium dodecylbenzene sulfonate (X1) (SDBS), oil (X2) (kerosene), water-soluble polymer poly(ethylene glycol) (X3) (PEG), and sodium chloride (X4) (NaCl), were studied using the full factorial design (FFD) model. Four output variables, namely conductivity (Y1), turbidity (Y2), viscosity (Y3), and interfacial tension (IFT) (Y4), were taken as the response variables. All four FFD models have high coefficients of determination and low errors. The developed models were used in a multi-objective optimization (MOO) framework to determine the optimal conditions. The obtained optimal conditions are X1 = 0.01, X2 = 50, X3 = 5, and X4 = 0.1, with an error of 0.9414 between the predicted and experimental objective function values. This result shows the efficiency of the model developed and the system used for the recovery of kerosene, while also having a positive effect on the protection of the environment.
URI: http://dspace.univ-bouira.dz:8080/jspui/handle/123456789/14819
Appears in Collections:Articles

Files in This Item:
File Description SizeFormat 
Designing an Efficient Surfactant–Polymer–Oil–Electrolyte System.pdf4,42 MBUnknownView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.