Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-bouira.dz:8080/jspui/handle/123456789/16190
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorRemini, Hocine-
dc.contributor.authorDahmoune, Farid-
dc.contributor.authorMadani, Khodir-
dc.contributor.authorMouni, Lotfi-
dc.contributor.authorNayake, Balunkeswar-
dc.contributor.authorKadrib, Nabil-
dc.contributor.authorBoughani, Lhadi-
dc.contributor.authorBouaoudia-Madia, Nadia-
dc.contributor.authorAdjerouda, Nawel-
dc.date.accessioned2024-03-04T07:55:54Z-
dc.date.available2024-03-04T07:55:54Z-
dc.date.issued2015-08-29-
dc.identifier.citationUniversité Akli Mohend Oulhadj Bouiraen_US
dc.identifier.urihttp://dspace.univ-bouira.dz:8080/jspui/handle/123456789/16190-
dc.description.abstractDesign of experiments (DOE) based on central composite design (CCD) and artificial neural networks (ANNs) were efficaciously applied for the study of the operating parameters of ultrasound assisted extraction (UAE) in the recovery of phenolic compounds from P. lentiscus leaves. These models were used to evaluate the effects of process variables and their interaction toward the attainment of their optimum conditions. Under the optimal conditions (13.79 min extraction time, 33.82 % amplitude and 30.99 % ethanol proportion), DOE and ANN models predicted a maximum response of 140.55 and 138.3452 mgGAE/gdw, respectively. A mean value of 142.76 ± 19.98 mgGAE/gdw, obtained from real experiments, demonstrated the validation of the extraction models. A comparison between the model results and experimental data gave high correlation coefficients (R2 ANN = 0.999, R2 RSM = 0.981), adjusted coefficients (RadjANN = 0.999, RadjRSM = 0.967) and low root mean square errors (RMSEANN = 0.37 and RMSERSM = 4.65) and showed that the two models were able to predict a total phenolic compounds (TPC) by green extraction ultrasound process. The results of ANN were found to be more consistent than DOE since better statistical parameters were obtaineden_US
dc.language.isoenen_US
dc.publisherUniversité Akli Mohend Oulhadj Bouiraen_US
dc.subjectAntioxidant activityen_US
dc.subjectPhenolic compoundsen_US
dc.subjectPistacia leavesen_US
dc.subjectUltrasound extractionen_US
dc.subjectDOEen_US
dc.subjectArtificial neural networksen_US
dc.titleUltrasound assisted extraction of phenolic compounds from P. lentiscus L. leaves: Comparative study of artificial neural network (ANN) versus degree of experiment for prediction ability of phenolic compounds recoveryen_US
dc.typeArticleen_US
Collection(s) :Articles

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Ultrasound_assisted_extraction_of_phenol.pdf1,14 MBUnknownVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.