Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-bouira.dz:8080/jspui/handle/123456789/16553
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | Boudjellal, Nawel | - |
dc.contributor.author | Roumili, Hayet | - |
dc.contributor.author | Benterki, Djamel | - |
dc.date.accessioned | 2024-03-28T08:40:47Z | - |
dc.date.available | 2024-03-28T08:40:47Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Université Akli Mohend Oulhadj Bouira | en_US |
dc.identifier.uri | http://dspace.univ-bouira.dz:8080/jspui/handle/123456789/16553 | - |
dc.description.abstract | The introduction of kernel function in primal-dual interior point meth- ods represents not only a measure of the distance between the iterate and the central path, but also plays an important role in the amelioration of the computational complexity of an interior point algorithm. In this paper, we present a polynomial primal-dual interior-point algorithm for solving convex quadratic programming based on a new kernel function with an exponential barrier term. It is shown that in the interior-point methods based on this function, the iteration bound enjoys O( p p3n (log pn)2 log n ) and O( p p3n log n ) for large and small-update methods respectively. This complexity generalizes the result obtained by Bai et al. and improves the results obtained by Boua a et al.. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Université Akli Mohend Oulhadj Bouira | en_US |
dc.subject | Convex quadratic programming | en_US |
dc.subject | Interior point methods | en_US |
dc.subject | Kernel function | en_US |
dc.title | A primal-dual interior point algorithm for convex quadratic programming based on a new kernel function with an exponential barrier term | en_US |
dc.type | Article | en_US |
Collection(s) : | Articles |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
A primal-dual interior point algorithm for convex.pdf | 365,94 kB | Unknown | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.