Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-bouira.dz:8080/jspui/handle/123456789/16555
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | Boudjellal, Nawel | - |
dc.contributor.author | Roumili, Hayet | - |
dc.contributor.author | Benterki, Djamel | - |
dc.date.accessioned | 2024-03-28T08:48:27Z | - |
dc.date.available | 2024-03-28T08:48:27Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Université Akli Mohend Oulhadj Bouira | en_US |
dc.identifier.uri | http://dspace.univ-bouira.dz:8080/jspui/handle/123456789/16555 | - |
dc.description.abstract | abstract: The kernel functions play an important role in the amelioration of the computational complexity of algorithms. In this paper, we present a primal-dual interior-point algorithm for solving convex quadratic programming based on a new parametric kernel function. The proposed kernel function is not logarithmic and not self-regular. We analysis a large and small-update versions which are based on a new kernel function. We obtain the best known iteration bound for large-update methods, which improves significantly the so far obtained complexity results. This result is the first to reach this goal. | en_US |
dc.description.sponsorship | ,, | en_US |
dc.language.iso | en | en_US |
dc.publisher | Université Akli Mohend Oulhadj Bouira | en_US |
dc.subject | Convex quadratic programming | en_US |
dc.subject | Interior point methods | en_US |
dc.subject | Kernel function | en_US |
dc.subject | Iteration bound. | en_US |
dc.title | Complexity Analysis of Interior Point Methods for Convex Quadratic Programming Based on a Parameterized Kernel Function | en_US |
dc.type | Article | en_US |
Collection(s) : | Articles |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
Complexity_analysis_of_interior_point_methods_for_.pdf | 246,61 kB | Unknown | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.