Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-bouira.dz:8080/jspui/handle/123456789/16555
Titre: Complexity Analysis of Interior Point Methods for Convex Quadratic Programming Based on a Parameterized Kernel Function
Auteur(s): Boudjellal, Nawel
Roumili, Hayet
Benterki, Djamel
Mots-clés: Convex quadratic programming
Interior point methods
Kernel function
Iteration bound.
Date de publication: 2022
Editeur: Université Akli Mohend Oulhadj Bouira
Référence bibliographique: Université Akli Mohend Oulhadj Bouira
Résumé: abstract: The kernel functions play an important role in the amelioration of the computational complexity of algorithms. In this paper, we present a primal-dual interior-point algorithm for solving convex quadratic programming based on a new parametric kernel function. The proposed kernel function is not logarithmic and not self-regular. We analysis a large and small-update versions which are based on a new kernel function. We obtain the best known iteration bound for large-update methods, which improves significantly the so far obtained complexity results. This result is the first to reach this goal.
URI/URL: http://dspace.univ-bouira.dz:8080/jspui/handle/123456789/16555
Collection(s) :Articles

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Complexity_analysis_of_interior_point_methods_for_.pdf246,61 kBUnknownVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.