Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-bouira.dz:8080/jspui/handle/123456789/6844
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBelkhiri, Lazhar-
dc.contributor.authorBoudoukha, Abderrahmane-
dc.contributor.authorMouni, Lotfi-
dc.date.accessioned2019-12-05T13:33:47Z-
dc.date.available2019-12-05T13:33:47Z-
dc.date.issued2010-11-15-
dc.identifier.citationUniversité de Bouiraen_US
dc.identifier.urihttp://dspace.univ-bouira.dz:8080/jspui/handle/123456789/6844-
dc.description.abstractMultivariate statistical methods and inverse geochemical modeling were jointly used to define the variation and the genetic origin of chemical parameters of groundwater in the Ain Azel plain, Algeria. Interpretation of analytical data shows that the abundance of the major ions is as follows: Ca ≥ Mg > Na > K and HCO3 ≥ Cl > SO4. Q-mode hierarchical cluster analysis (HCA) was employed for partitioning the water samples into hydrochemical facies, also known as water groups or water types. Three major water groups resulted from the HCA analysis. The samples from the area were classified as recharge area waters (Group 1: Ca-Mg-HCO3 water), transition zone waters (Group 2: Ca-Mg-Cl-HCO3 water), and discharge area waters (Group 3: Mg-Ca-HCO3-Cl water). Inverse geochemical models of the statistical groups were developed using PHREEQC to elucidate the chemical reactions controlling water chemistry. The inverse geochemical modeling demonstrated that relatively few phases are required to derive water chemistry in the area. In a broad sense, the reactions responsible for the hydrochemical evolution in the area fall into three categories: (1) dissolution of evaporite minerals; (2) precipitation of carbonate minerals; and (3) weathering reactions of silicate minerals.en_US
dc.language.isoenen_US
dc.publisherGeoderma 159 Elsevieren_US
dc.subjectHierarchical cluster analysis,Inverse geochemical modeling,PHREEQC,Ain Azel,Algeriaen_US
dc.subjectanalysis, case studies, characterization, cluster analysis, discharge, groundwater, hydrology, ions, minerals, models, recharge, soil chemistry, statistical analysis, variation, water, weatheringen_US
dc.titleApplication of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater—a case study: Ain Azel plain (Algeria)en_US
dc.typeArticleen_US
Collection(s) :Articles



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.